还剩3页未读,
继续阅读
所属成套资源:人教版数学七年级下册同步练习(含答案)
成套系列资料,整套一键下载
人教版七年级下册 8.3《实际问题与二元一次方程组》第1课时 利用二元一次方程组解决实际问题
展开
这是一份人教版七年级下册 8.3《实际问题与二元一次方程组》第1课时 利用二元一次方程组解决实际问题,共4页。
要点感知 用方程组解应用题的一般步骤是:(1)审题:弄清题意和题目中的__________;(2)设元:用__________表示题目中的未知数,可__________设未知数,也可__________设未知数;(3)列方程组:挖掘题中的所有条件,找出两个与未知数相关的__________,并依此列出__________;(4)解方程组:利用__________法或__________法解所列方程组,求出未知数的值;(5)检验作答:检验所求的解是否符合题目的实际意义,然后作答.
预习练习 (2014·温州)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是( )
A. B. C. D.
知识点1 建立二元一次方程组模型解决实际问题
1.某校七年级一班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:
表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可列方程组( )
A. B. C. D.
2.(2013·西双版纳)自去年3月西双版纳州启动农村义务教育学生营养改善计划以来,某校根据上级要求配备了一批营养早餐.某天早上七年级(1)班分到牛奶、面包共7件,每件牛奶24元,每件面包16元,共需144元.求这天早上该班分到多少件牛奶,多少件面包?
3.(2014·泰州)今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.
知识点2 建立二元一次方程组模型解决几何问题
4.(2013·漳州)如图,10块相同的小长方形墙砖拼成一个长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程正确的是( )
A. B. C. D.
5.(2012·阜新)如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个拼成的长方形的长为30,宽为20,则图2中Ⅱ部分的面积是__________.
6.(2012·吉林)如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度为28 cm,演员踩在高跷上时,头顶距离地面的高度为224 cm.设演员身高为x cm,高跷的长度为y cm,求x,y的值.
7.某校春季运动会比赛中,八年级(1)班和(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分的比为6∶5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的方程组为( )
A. B. C. D.
8.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为220 cm,此时木桶中水的深度是__________cm.
9.(2014·滨州)某公园“6·1”期间举行特优读书游园活动,成人票和儿童票均有较大折扣,张凯和李利都随他们的家人参加了本次活动,王斌也想去,就去打听张凯、李利买门票花了多少钱,张凯说他家3个大人4个小孩,共花了38元钱,李利说他家4个大人2个小孩,共花了44元钱,王斌计划去3个大人和2个小孩,请你帮他计算一下,需准备__________元钱买门票.
10.A、B两地相距20千米,甲从A地向B地匀速行进,同时乙从B地向A地匀速行进,两个小时后两人在途中相遇,相遇后甲立即以原速返回A地,乙继续以原速向A地行进,甲回到A地时乙离A地还有4千米,求甲、乙两人的速度.
11.(2013·凉山)根据图中给出的信息,解答下列问题:
(1)放入一个小球水面升高__________cm,放入一个大球水面升高__________cm;
(2)如果要使水面上升到50 cm,应放入大球、小球各多少个?
挑战自我
12.一个长方形的养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,谁的设计符合实际,按照他的设计,鸡场的面积多大?
参考答案
课前预习
要点感知 数量关系 字母 直接 间接 等量关系 方程组 代入消元 加减消元
预习练习 D
当堂训练
1.A
2.设这天早上该班分到x件牛奶,y件面包.根据题意,得
解得
答:这天早上该班分到4件牛奶,3件面包.
3.设去年外来旅游的人数为x万人,外出旅游的人数为y万人.由题意得
解得
∴(1+0.3)x=130,(1+0.2)y=96.
答:该市今年外来和外出旅游的人数分别是130万人和96万人.
4.B 5.100
6.根据题意,得:
解得
答:x,y的值分别为168,84.
课后作业
7.D 8.80 9.34
10.设甲的速度为x千米/时,乙的速度为y千米/时.由题意得
解得
答:甲的速度为6千米/时,乙的速度为4千米/时.
11.(1)2 3
(2)设应放入x个大球,y个小球.由题意得
解得
答:应放入4个大球,6个小球.
12.根据小王的设计可以设垂直于墙的一边长为x米,平行于墙的一边长为y米.根据题意得
解得
又因为墙的长度只有14米,
所以小王的设计不符合实际.
根据小赵的设计可以设垂直于墙的一边长为a米,平行于墙的一边长为b米.根据题意得
解得
又因为墙的长度有14米,显然小赵的设计符合要求.
此时鸡场的面积为11×13=143(平方米).
答:小赵的设计符合实际,按照他的设计,鸡场的面积为143平方米.
捐款/元
1
2
3
4
人数
6
▅
▅
7
要点感知 用方程组解应用题的一般步骤是:(1)审题:弄清题意和题目中的__________;(2)设元:用__________表示题目中的未知数,可__________设未知数,也可__________设未知数;(3)列方程组:挖掘题中的所有条件,找出两个与未知数相关的__________,并依此列出__________;(4)解方程组:利用__________法或__________法解所列方程组,求出未知数的值;(5)检验作答:检验所求的解是否符合题目的实际意义,然后作答.
预习练习 (2014·温州)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是( )
A. B. C. D.
知识点1 建立二元一次方程组模型解决实际问题
1.某校七年级一班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:
表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可列方程组( )
A. B. C. D.
2.(2013·西双版纳)自去年3月西双版纳州启动农村义务教育学生营养改善计划以来,某校根据上级要求配备了一批营养早餐.某天早上七年级(1)班分到牛奶、面包共7件,每件牛奶24元,每件面包16元,共需144元.求这天早上该班分到多少件牛奶,多少件面包?
3.(2014·泰州)今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.
知识点2 建立二元一次方程组模型解决几何问题
4.(2013·漳州)如图,10块相同的小长方形墙砖拼成一个长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程正确的是( )
A. B. C. D.
5.(2012·阜新)如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个拼成的长方形的长为30,宽为20,则图2中Ⅱ部分的面积是__________.
6.(2012·吉林)如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度为28 cm,演员踩在高跷上时,头顶距离地面的高度为224 cm.设演员身高为x cm,高跷的长度为y cm,求x,y的值.
7.某校春季运动会比赛中,八年级(1)班和(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分的比为6∶5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的方程组为( )
A. B. C. D.
8.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为220 cm,此时木桶中水的深度是__________cm.
9.(2014·滨州)某公园“6·1”期间举行特优读书游园活动,成人票和儿童票均有较大折扣,张凯和李利都随他们的家人参加了本次活动,王斌也想去,就去打听张凯、李利买门票花了多少钱,张凯说他家3个大人4个小孩,共花了38元钱,李利说他家4个大人2个小孩,共花了44元钱,王斌计划去3个大人和2个小孩,请你帮他计算一下,需准备__________元钱买门票.
10.A、B两地相距20千米,甲从A地向B地匀速行进,同时乙从B地向A地匀速行进,两个小时后两人在途中相遇,相遇后甲立即以原速返回A地,乙继续以原速向A地行进,甲回到A地时乙离A地还有4千米,求甲、乙两人的速度.
11.(2013·凉山)根据图中给出的信息,解答下列问题:
(1)放入一个小球水面升高__________cm,放入一个大球水面升高__________cm;
(2)如果要使水面上升到50 cm,应放入大球、小球各多少个?
挑战自我
12.一个长方形的养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,谁的设计符合实际,按照他的设计,鸡场的面积多大?
参考答案
课前预习
要点感知 数量关系 字母 直接 间接 等量关系 方程组 代入消元 加减消元
预习练习 D
当堂训练
1.A
2.设这天早上该班分到x件牛奶,y件面包.根据题意,得
解得
答:这天早上该班分到4件牛奶,3件面包.
3.设去年外来旅游的人数为x万人,外出旅游的人数为y万人.由题意得
解得
∴(1+0.3)x=130,(1+0.2)y=96.
答:该市今年外来和外出旅游的人数分别是130万人和96万人.
4.B 5.100
6.根据题意,得:
解得
答:x,y的值分别为168,84.
课后作业
7.D 8.80 9.34
10.设甲的速度为x千米/时,乙的速度为y千米/时.由题意得
解得
答:甲的速度为6千米/时,乙的速度为4千米/时.
11.(1)2 3
(2)设应放入x个大球,y个小球.由题意得
解得
答:应放入4个大球,6个小球.
12.根据小王的设计可以设垂直于墙的一边长为x米,平行于墙的一边长为y米.根据题意得
解得
又因为墙的长度只有14米,
所以小王的设计不符合实际.
根据小赵的设计可以设垂直于墙的一边长为a米,平行于墙的一边长为b米.根据题意得
解得
又因为墙的长度有14米,显然小赵的设计符合要求.
此时鸡场的面积为11×13=143(平方米).
答:小赵的设计符合实际,按照他的设计,鸡场的面积为143平方米.
捐款/元
1
2
3
4
人数
6
▅
▅
7
相关资料
更多