- 2020年陕西省中考地理试题 试卷 3 次下载
- 2020年陕西省中考化学模拟试卷(5) 试卷 1 次下载
- 2020年陕西省中考数学试卷 试卷 2 次下载
- 2020年陕西省中考物理试卷附答案解析版 试卷 2 次下载
- 陕西省2020年中考化学试题 试卷 1 次下载
- 2020年陕西省中考化学模拟试卷(2) 试卷 1 次下载
2020年陕西省中考数学试卷
展开1.(3分)﹣18的相反数是( )
A.18B.﹣18C.D.
2.(3分)若∠A=23°,则∠A余角的大小是( )
A.57°B.67°C.77°D.157°
3.(3分)2019年,我国国内生产总值约为990870亿元,将数字990870用科学记数法表示为( )
A.9.9087×105B.9.9087×104C.99.087×104D.99.087×103
4.(3分)如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是( )
A.4℃B.8℃C.12℃D.16℃
5.(3分)计算:(x2y)3=( )
A.﹣2x6y3B.x6y3C.x6y3D.x5y4
6.(3分)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为( )
A.B.C.D.
7.(3分)在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为( )
A.2B.3C.4D.6
8.(3分)如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC=90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为( )
A.B.C.3D.2
9.(3分)如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为( )
A.55°B.65°C.60°D.75°
10.(3分)在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在( )
A.第一象限B.第二象限C.第三象限D.第四象限
二、填空题(共4小题,每小题3分,计12分)
11.(3分)计算:(2)(2)= .
12.(3分)如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是 .
13.(3分)在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y(k≠0)的图象经过其中两点,则m的值为 .
14.(3分)如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF的长为 .
三、解答题(共11小题,计78分.解答应写出过程)
15.(5分)解不等式组:
16.(5分)解分式方程:1.
17.(5分)如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)
18.(5分)如图,在四边形ABCD中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD=BE.
19.(7分)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:
(1)这20条鱼质量的中位数是 ,众数是 .
(2)求这20条鱼质量的平均数;
(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?
20.(7分)系统找不到该试题
21.(7分)某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.
(1)求y与x之间的函数关系式;
(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?
22.(7分)小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.
(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;
(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.
23.(8分)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.
(1)求证:AD∥EC;
(2)若AB=12,求线段EC的长.
24.(10分)如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.
(1)求该抛物线的表达式;
(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.
25.(12分)问题提出
(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是 .
问题探究
(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.
问题解决
(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).
①求y与x之间的函数关系式;
②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.
2020年陕西省中考数学试卷
参考答案与试题解析
一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)
1.(3分)﹣18的相反数是( )
A.18B.﹣18C.D.
【解答】解:﹣18的相反数是:18.
故选:A.
2.(3分)若∠A=23°,则∠A余角的大小是( )
A.57°B.67°C.77°D.157°
【解答】解:∵∠A=23°,
∴∠A的余角是90°﹣23°=67°.
故选:B.
3.(3分)2019年,我国国内生产总值约为990870亿元,将数字990870用科学记数法表示为( )
A.9.9087×105B.9.9087×104C.99.087×104D.99.087×103
【解答】解:990870=9.9087×105,
故选:A.
4.(3分)如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是( )
A.4℃B.8℃C.12℃D.16℃
【解答】解:从折线统计图中可以看出,这一天中最高气温8℃,最低气温是﹣4℃,这一天中最高气温与最低气温的差为12℃,
故选:C.
5.(3分)计算:(x2y)3=( )
A.﹣2x6y3B.x6y3C.x6y3D.x5y4
【解答】解:(x2y)3.
故选:C.
6.(3分)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为( )
A.B.C.D.
【解答】解:由勾股定理得:AC,
∵S△ABC=3×33.5,
∴,
∴,
∴BD,
故选:D.
7.(3分)在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为( )
A.2B.3C.4D.6
【解答】解:在y=x+3中,令y=0,得x=﹣3,
解得,,
∴A(﹣3,0),B(﹣1,2),
∴△AOB的面积3×2=3,
故选:B.
8.(3分)如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC=90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为( )
A.B.C.3D.2
【解答】解:∵E是边BC的中点,且∠BFC=90°,
∴Rt△BCF中,EFBC=4,
∵EF∥AB,AB∥CG,E是边BC的中点,
∴F是AG的中点,
∴EF是梯形ABCG的中位线,
∴CG=2EF﹣AB=3,
又∵CD=AB=5,
∴DG=5﹣3=2,
故选:D.
9.(3分)如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为( )
A.55°B.65°C.60°D.75°
【解答】解:连接CD,
∵∠A=50°,
∴∠CDB=180°﹣∠A=130°,
∵E是边BC的中点,
∴OD⊥BC,
∴BD=CD,
∴∠ODB=∠ODCBDC=65°,
故选:B.
10.(3分)在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在( )
A.第一象限B.第二象限C.第三象限D.第四象限
【解答】解:∵y=x2﹣(m﹣1)x+m=(x)2+m,
∴该抛物线顶点坐标是(,m),
∴将其沿y轴向下平移3个单位后得到的抛物线的顶点坐标是(,m3),
∵m>1,
∴m﹣1>0,
∴0,
∵m31<0,
∴点(,m3)在第四象限;
故选:D.
二、填空题(共4小题,每小题3分,计12分)
11.(3分)计算:(2)(2)= 1 .
【解答】解:原式=22﹣()2
=4﹣3
=1.
12.(3分)如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是 144° .
【解答】解:因为五边形ABCDE是正五边形,
所以∠C108°,BC=DC,
所以∠BDC36°,
所以∠BDM=180°﹣36°=144°,
故答案为:144°.
13.(3分)在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y(k≠0)的图象经过其中两点,则m的值为 ﹣1 .
【解答】解:∵点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限,点A(﹣2,1)在第二象限,
∴点C(﹣6,m)一定在第三象限,
∵B(3,2)在第一象限,反比例函数y(k≠0)的图象经过其中两点,
∴反比例函数y(k≠0)的图象经过B(3,2),C(﹣6,m),
∴3×2=﹣6m,
∴m=﹣1,
故答案为:﹣1.
14.(3分)如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF的长为 2 .
【解答】解:如图,过点A和点E作AG⊥BC,EH⊥BC于点G和H,
得矩形AGHE,
∴GH=AE=2,
∵在菱形ABCD中,AB=6,∠B=60°,
∴BG=3,AG=3EH,
∴HC=BC﹣BG﹣GH=6﹣3﹣2=1,
∵EF平分菱形面积,
∴FC=AE=2,
∴FH=FC﹣HC=2﹣1=1,
在Rt△EFH中,根据勾股定理,得
EF2.
故答案为:2.
三、解答题(共11小题,计78分.解答应写出过程)
15.(5分)解不等式组:
【解答】解:,
由①得:x>2,
由②得:x<3,
则不等式组的解集为2<x<3.
16.(5分)解分式方程:1.
【解答】解:方程1,
去分母得:x2﹣4x+4﹣3x=x2﹣2x,
解得:x,
经检验x是分式方程的解.
17.(5分)如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)
【解答】解:如图,点P即为所求.
18.(5分)如图,在四边形ABCD中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD=BE.
【解答】证明:∵DE=DC,
∴∠DEC=∠C.
∵∠B=∠C,
∴∠B=∠DEC,
∴AB∥DE,
∵AD∥BC,
∴四边形ABED是平行四边形.
∴AD=BE.
19.(7分)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:
(1)这20条鱼质量的中位数是 1.45kg ,众数是 1.5kg .
(2)求这20条鱼质量的平均数;
(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?
【解答】解:(1)∵这20条鱼质量的中位数是第10、11个数据的平均数,且第10、11个数据分别为1.4、1.5,
∴这20条鱼质量的中位数是1.45(kg),众数是1.5kg,
故答案为:1.45kg,1.5kg.
(2)1.45(kg),
∴这20条鱼质量的平均数为1.45kg;
(3)18×1.45×2000×90%=46980(元),
答:估计王大伯近期售完鱼塘里的这种鱼可收入46980元.
20.(7分)系统找不到该试题
21.(7分)某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.
(1)求y与x之间的函数关系式;
(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?
【解答】解:(1)当0≤x≤15时,设y=kx(k≠0),
则:20=15k,
解得k,
∴y;
当15<x≤60时,设y=k′x+b(k≠0),
则:,
解得,
∴y,
∴;
(2)当y=80时,80,解得x=33,
33﹣15=18(天),
∴这种瓜苗移至大棚后.继续生长大约18天,开始开花结果.
22.(7分)小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.
(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;
(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.
【解答】解:(1)小亮随机摸球10次,其中6次摸出的是红球,这10次中摸出红球的频率;
(2)画树状图得:
∵共有16种等可能的结果,两次摸出的球中一个是白球、一个是黄球的有2种情况,
∴两次摸出的球中一个是白球、一个是黄球的概率.
23.(8分)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.
(1)求证:AD∥EC;
(2)若AB=12,求线段EC的长.
【解答】证明:(1)连接OC,
∵CE与⊙O相切于点C,
∴∠OCE=90°,
∵∠ABC=45°,
∴∠AOC=90°,
∵∠AOC+∠OCE=180°,
∴∴AD∥EC
(2)如图,过点A作AF⊥EC交EC于F,
∵∠BAC=75°,∠ABC=45°,
∴∠ACB=60°,
∴∠D=∠ACB=60°,
∴sin∠ADB,
∴AD8,
∴OA=OC=4,
∵AF⊥EC,∠OCE=90°,∠AOC=90°,
∴四边形OAFC是矩形,
又∵OA=OC,
∴四边形OAFC是正方形,
∴CF=AF=4,
∵∠BAD=90°﹣∠D=30°,
∴∠EAF=180°﹣90°﹣30°=60°,
∵tan∠EAF,
∴EFAF=12,
∴CE=CF+EF=12+4.
24.(10分)如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.
(1)求该抛物线的表达式;
(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.
【解答】解:(1)将点(3,12)和(﹣2,﹣3)代入抛物线表达式得,解得,
故抛物线的表达式为:y=x2+2x﹣3;
(2)抛物线的对称轴为x=﹣1,令y=0,则x=﹣3或1,令x=0,则y=﹣3,
故点A、B的坐标分别为(﹣3,0)、(1,0);点C(0,﹣3),
故OA=OC=3,
∵∠PDE=∠AOC=90°,
∴当PD=DE=3时,以P、D、E为顶点的三角形与△AOC全等,
设点P(m,n),当点P在抛物线对称轴右侧时,m﹣(﹣1)=3,解得:m=2,
故n=22+2×2﹣5=5,故点P(2,5),
故点E(﹣1,2)或(﹣1,8);
当点P在抛物线对称轴的左侧时,由抛物线的对称性可得,点P(﹣4,5),此时点E坐标同上,
综上,点P的坐标为(2,5)或(﹣4,5);点E的坐标为(﹣1,2)或(﹣1,8).
25.(12分)问题提出
(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是 CF、DE、DF .
问题探究
(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.
问题解决
(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).
①求y与x之间的函数关系式;
②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.
【解答】解:(1)∵∠ACB=90°,DE⊥AC,DF⊥BC,
∴四边形CEDF是矩形,
∵CD平分∠ACB,DE⊥AC,DF⊥BC,
∴DE=DF,
∴四边形CEDF是正方形,
∴CE=CF=DE=DF,
故答案为:CF、DE、DF;
(2)连接OP,如图2所示:
∵AB是半圆O的直径,2,
∴∠APB=90°,∠AOP180°=60°,
∴∠ABP=30°,
同(1)得:四边形PECF是正方形,
∴PF=CF,
在Rt△APB中,PB=AB•cs∠ABP=8×cs30°=84,
在Rt△CFB中,BFCF,
∵PB=PF+BF,
∴PB=CF+BF,
即:4CFCF,
解得:CF=6﹣2;
(3)①∵AB为⊙O的直径,
∴∠ACB=∠ADB=90°,
∵CA=CB,
∴∠ADC=∠BDC,
同(1)得:四边形DEPF是正方形,
∴PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB=90°,
∴将△APE绕点P逆时针旋转90°,得到△A′PF,PA′=PA,如图3所示:
则A′、F、B三点共线,∠APE=∠A′PF,
∴∠A′PF+∠BPF=90°,即∠A′PB=90°,
∴S△PAE+S△PBF=S△PA′BPA′•PBx(70﹣x),
在Rt△ACB中,AC=BCAB70=35,
∴S△ACBAC2(35)2=1225,
∴y=S△PA′B+S△ACBx(70﹣x)+1225x2+35x+1225;
②当AP=30时,A′P=30,PB=AB﹣AP=70﹣30=40,
在Rt△A′PB中,由勾股定理得:A′B50,
∵S△A′PBA′B•PFPB•A′P,
∴50×PF40×30,
解得:PF=24,
∴S四边形PEDF=PF2=242=576(m2),
∴当AP=30m时.室内活动区(四边形PEDF)的面积为576m2.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2020/7/25 15:49:58;用户:数学;邮箱:zyerz2@xyh.cm;学号:30678705
2021年陕西省中考数学试卷: 这是一份2021年陕西省中考数学试卷,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2015年陕西省中考数学试卷: 这是一份2015年陕西省中考数学试卷,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2011年陕西省中考数学试卷: 这是一份2011年陕西省中考数学试卷,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。