试卷 中考数学专题复习第三篇 函数
展开第三篇 函数
一 平面直角坐标系与函数的概念及图象
一、平面直角坐标系内点的坐标特征
1、(2011江苏宿迁,2,3分)在平面直角坐标中,点M(-2,3)在(▲)
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2、(2011山东枣庄,4,3分)在平面直角坐标系中,点P(-2,+1)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3、(2011福建莆田,3,4分)已知点P(a,a-1)在平面直角坐标系的第一象限,则a的取值范围在数轴上可表示为( )
4、(2010•广西百色)以百色汽车总站为坐标原点,向阳路为轴建立直角坐标系,百色起义纪念馆位置如图所示,则其所覆盖的坐标可能是( )
A.(-5,3) B. (4,3) C.(5,-3) D.(-5,-3)
5、(2009·青海)第二象限内的点满足,,则点的坐标是 .
二、用坐标确定位置
6、 (2011山东济宁,10,3分)在一次夏令营活动中,小霞同学从营地点出发,要到距离点的地去,先沿北偏东方向到达地,然后再沿北偏西方向走了到达目的地,此时小霞在营地的( )
A. 北偏东方向上 B.北偏东方向上
C. 北偏东方向上 D. 北偏西方向上
7、(2009·浙江绍兴)如图是绍兴市行政区域图,若上虞市区所在地用坐标表示为(1,2),诸暨市区所在地用坐标表示为(-5,-2),那么嵊州市区所在地用坐标可表示为__________.
三、确定坐标平面内图形上点的坐标
8、 (2011湖南怀化,8,3分)如图4,若在象棋盘上建立直角坐标系,使“帥”位于点(-1,-2),“馬”位于点(2,-2),则“兵”位于点
A.(-1,1) B.(-2,-1) C.(-3,1) D.(1,-2)
9、(2011山东枣庄,12,3分)如图,点的坐标是,若点在轴上,且是等腰三角形,则点的坐标不可能是( )
1
2
3
4
-1
1
2
x
y
A
0
A.(2,0) B.(4,0) C.(-,0) D.(3,0)
10、(2011山东威海,14,3分)正方形ABCD在平面直角坐标系中的位置如图所示,已知A点的坐标(0,4),B点的坐标(-3,0),则C点的坐标是 .
11、(2011辽宁沈阳,11,4分)在平面直角坐标系中,若点M(-1,3)与点N(x,3)之间的距离是5,则x的值是___________。
12、(2011江西b卷,16,3分)在直角坐标系中,已知A(1,0)、B(-1,-2)、C(2,-2)三点坐标,若以 A、B、C、D为顶点的四边形是平行四边形,那么点D的坐标可以是 .(填序号,多填或填错得0分,少填酌情给分)
①(-2,0) ②(0,-4) ③(4,0) ④(1,-4)
.
13、(2011贵州安顺,17,4分)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为 .
第17题图
14、 (2011湖北武汉市,9,3分)在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为
A.64. B.49. C.36. D.25.
15、(2011贵州安顺,10,3分)一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )
A.(4,O) B.(5,0) C.(0,5) D.(5,5)
第10题图
四、用坐标表示对称
16、(2011江苏泰州)点P(-3,2)关于x轴对称的点P`的坐标是 .
17、(2011江苏盐城,14,3分)如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(-1,4). 将△ABC沿y轴翻折到第一象限,则点C的对应点C′的坐标是 ▲ .
(第14题图)
18、(2011福建莆田,15,4分)如图,一束光线从A(3,3)出发,经过y轴上的点C反射后经过点B(1,0),则光线从A点到B点经过的路线长是_ ▲ .
19、(2011宁波市)平面直角坐标系中,与点(2,-3)关于原点中心对称的点是
A. (-3,2) B. (3,-2) C. (-2,3) D. (2,3)
20.(2011甘肃兰州)点M(-sin60°,cos60°)关于x轴对称的点的坐标是
A.(,) B.(,) C.(,) D.(,)
21. (2011吉林长春,7,3分)如图,矩形OABC的边OA、OC分别在轴、轴上,点B的坐标为.点D、E分别在AB、BC边上,BD=BE=1.沿直线DE将△BDE翻折,点B落在B′处.则点B′的坐标为
(A). (B). (C). (D).
22、(20011江苏镇江,7,2分)在平面直角坐标系中,正方形ABCD的顶点坐标分别为A(1,1),B(1,-1),C(-1,-1),D(-1,1),y轴上有一点P(0,2).作点P关于点A的对称点,作点关于点B的对称点,作点关于点C的对称点,作点关于点D的对称点,作点关于点A的对称点,作点关于点B的对称点…,按此操作下去,则点的坐标为( )
A.(0,2) B. (2,0) C. (0,-2) D.(-2,0)
23. (2011湖南永州,19,6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(,5),(,3).
⑴请在如图所示的网格平面内作出平面直角坐标系;
⑵请作出△ABC关于y轴对称的△A′B′C′;
⑶写出点B′的坐标.
(第19题)
五、用坐标表示平移
24. (2011贵州遵义,13,4分)将点P(-2,1)先向左平移1个单位长度,再向上平移2个单位长度得到点P/,则点P/的坐标为 。
25、. (2011江苏宿迁,14,3分)在平面直角坐标系中,已知点A(-4,0)、B(0,2),现将线段AB向右平移,使A与坐标原点O重合,则B平移后的坐标是 .
26、(2011内蒙古乌兰察布,8,3分)在平面直角坐标系中,已知线段AB的两个端点分别是A( 4 ,-1).B(1,1) 将线段AB平移后得到线段A 'B',若点A'的坐标为 (-2 , 2 ) ,则点 B'的坐标为( )
A . ( -5 , 4 ) B . ( 4 , 3 ) C. ( -1 , -2 ) D .(-2,-1)
27、 (2011山东日照,7,3分) 以平行四边形ABCD的顶点A为原点,直线AD为x轴建立直角坐标系,已知B、D点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C点平移后相应的点的坐标是( )
(A)(3,3) (B)(5,3) (C)(3,5) (D)(5,5)
28. (2011河南,6,3分)如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O旋转180°到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A在丙位置中的对应点A′的坐标为( )
(A)(3,1) (B)(1,3)
(C)(3,-1) (D)(1,1)
29、 (2011湖北鄂州,14,3分)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为( )
A.4 B.8 C.16 D.
第14题图
A
B
C
O
y
x
30、(2011安徽,18,8分)在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.
O
1
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A12
x
y
(1)填写下列各点的坐标:A4( , ),A8( , ),A12( , );
(2)写出点A4n的坐标(n是正整数);
(3)指出蚂蚁从点A100到点A101的移动方向.
六、用坐标表示旋转
31、(2011山东泰安)若点A的坐标为(6,3),O为坐标原点,将OA绕点O按顺时针方向旋转900得到OA',则点A'的坐标为( )
A.(3,-6) B.(-3,6) C.(-3,-6) D.(3,6)
32、(2010湖北孝感,11,3分)如图,菱形OABC的一边OA在x轴上,将菱形OABC绕原点O顺时针旋转75°至OA’B’C’的位置.若OB=,∠C=120°,则点B’的坐标为( )
A. B. C. D.
33、 (2011四川广安 )在直角坐标平面内的机器人接受指令“”(≥0,<<)后的行动结果为:在原地顺时针旋转后,再向正前方沿直线行走.若机器人的位置在原点,正前方为y轴的负半轴,则它完成一次指令后位置的坐标为( )
A.() B.() C.() D.()
34. (2011江西,15,3分)如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是 .
第14题图
35、 (2011山东莱芜,17,4分)如图①为Rt△AOB,∠AOB=, 其中 OA=3,OB=4,将△AOB沿x轴依次以A、B、O为旋转中心顺时针旋转,分别得图②,图③,……,求旋转到图⑩时直角顶点的坐标是_______________.
36、(2009·福建莆田)△ABC在方格纸中的位置如图所示.
(1)请在方格纸上建立平面直角坐标系,使得A、B两点的坐标分别为A(2,-1)、B(1,-4),并求出C点的坐标;
(2)作出△ABC关于横轴对称的△,再作出△ABC以坐标原点为旋转中心、旋转180°后的△,并写出、两点的坐标.
七、确定函数自变量的取值范围
37、(2011江苏苏州)函数y=的自变量x的取值范围是___________________________________.
38、(2011安徽芜湖)函数中,自变量的取值范围是 ( ).
A. B. C. D.
39、 (2011湖南衡阳)函数中自变量x的取值范围是( )
A.≥-3 B.≥-3且 C. D.且
40、(2011四川乐山)下列函数中,自变量x的取值范围为x<1的是
A. B. C. D.
八、函数值
41、(2010·广西钦州)根据如图所示的计算程序,若输入的值x =-1,则输出的值y = ________.
42、(2011福建莆田)已知函数,其中f(a)表示x=a时对应的函数值,
如,,,
则_ ▲ .
九、用解析法表示函数关系
43、(2011重庆市潼南,8,4分)目前,全球淡水资源日益减少,提倡全社会节约用水.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是
A.y=0.05x B. y=5x C.y=100x D.y=0.05x+100
44、(2010·四川自贡)为迎接省运会在我市召开,市里组织了一个梯形鲜花队参加开幕式,要求共站60排,第一排40人,后面每一排都比前一排多站一人,则每排人数y与该排排数x之间的函数关系式为____________.
45、 (2011浙江台州,15,5分)若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”。请写出一个“和谐点”的坐标,答:
46、 (2011湖南常德,16,3分)设min{x,y}表示x,y两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x的函数y可以表示为( )
A. B.
C. y =2x D. y=x+2
十、用图象法表示函数关系
47、(2011江苏泰州)某公司计划新建一个容积V(m3)一定的长方体污水处理池,池的底面积S(m2)与其深度h(m)之间的函数关系式为S=(h≠0),这个函数的图像大致是
A. B. C. D.
48、(2011四川重庆,8,4分) 为了建设社会主义新农村,我市积极推进“行政村通畅工程”,张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间道路的改造.下面能反映该工程尚未改造道路里程y(公里)与时间x(天)的函数关系的大致图像是( )
A. B. C. D.
49、(2011福建泉州,6,3分)小吴今天到学校参加初中毕业会考,从家里出发走10分钟到离家500米的地方吃早餐,吃早餐用了20分钟;再用10分钟赶到离家1000米的学校参加考试.下列图象中,能反映这一过程的是( ).
50.(2011浙江衢州,9,3分)小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图).若小亮上坡、平路、下坡的速度分别为,且,则小亮同学骑车上学时,离家的路程与所用时间的函数关系图像可能是()
51、(2011黑龙江绥化,14,3分)向大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止注水1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是( )
52、(2011贵州贵阳,8,3分)如图所示,货车匀速通过隧道(隧道长大于货车长)时,货车从进入隧道至离开隧道的时间x与货车在隧道内的长度y之间的关系用图象描述大致是
(第8题图)
53、数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是( )
A
B
C
D
(第7题)
54、(2011江西,8,3分)时钟在正常运行时,分针每分钟转动6,时针每分钟转动0.5.在运行过程中,时针与分针的夹角会随着时间的变化而变化.设时针与分针的夹角为y(度),运行时间为t(分),当时间从12:00开始到12:30止,y与t之间的函数图像是( ).
55、(2011四川宜宾,8,3分)如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路线为x,以点A、P、D为顶点的三角形的面积是y.则下列图象能大致反映y与x的函数关系的是( )
十一、图象信息处理
56、(2011江苏盐城,8,3分)小亮从家步行到公交车站台,等公交车去学校. 图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系. 下列说法错误的是
(第8题图)
A.他离家8km共用了30min
B.他等公交车时间为6min
C.他步行的速度是100m/min
D.公交车的速度是350m/min
57、(2011广东株洲,7,3分)根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断,下列说法错误的是:( )
A.男生在13岁时身高增长速度最快 B.女生在10岁以后身高增长速度放慢
C.11岁时男女生身高增长速度基本相同 D.女生身高增长的速度总比男生慢
58、(2011江苏南通,9,3分)甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20千米,他们前进的路程为s(单位:千米),甲出发后的时间为t(单位:小时),甲、乙前进的路程与时间的函数图像如图所示.根据图像信息,下列说法正确的是
A. 甲的速度是4千米/小时
B. 乙的速度是10千米/小时
C. 乙比甲晚出发1小时
D. 甲比乙晚到B地3小时
59、(2011山东烟台,11,4分)在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有( )
A. 1 个 B. 2 个 C.3 个 D. 4个
60、(2011吉林长春,25,10分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备后,乙组的工作效率是原来的2倍.两组各自加工数量y(件)与时间(时)之间的函数图象如图所示.
(1)求甲组加工零件的数量y与时间之间的函数关系式.(2分)
(2)求乙组加工零件总量的值.(3分)
(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?(5分)
二 一次函数
一、正比例函数的图象与性质
1、(2011湖南湘西).当k>0时,正比例函数y=kx的图象大致是( )
2、(2009·浙江衢州)P1(x1,y1),P2(x2,y2)是正比例函数y= -x图象上的两点,则下列判断正确的是( )
A.y1>y2 B.y1
二、一次函数及其图象
4. (2011山东滨州,6,3分)关于一次函数y=-x+1的图像,下列所画正确的是( )
5、(2011河北,5,2分)一次函数y=6x+1的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6、(2011广西桂林,8,3分)直线y=kx-1一定经过点( ).
A.(1,0) B.(1,k) C.(0,k) D.(0,-1)
7、(2011浙江杭州,7,3)一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是
8、(2010·云南玉溪)如图,所示的计算程序中,y与x之间的函数关系对应的图象所在的象限是 ( )
A. 第一象限 B. 第一、三象限 C. 第二、四象限 D. 第一、四象限
9、(2011山东泰安,13 ,3分)已知一次函数y=mx+n-2的图像如图所示,则m、n的取值范围是( )
A.m>0,n<2 B. m>0,n>2 C. m<0,n<2 D. m<0,n>2
10、(2010·浙江温州)直线y=x+3与y轴的交点坐标是( )
A.(0,3) B.(0,1) C.( 3,0) D.( 1,0)
11、(2009·安徽芜湖)关于的一次函数的图象可能正确的是( )
12、 (2011辽宁沈阳,13,4分)如果一次函数y=4x+b的图像经过第一、三、四象限,那么b的取值范围是_______________。
13.(2011内蒙古呼和浩特市,12,3分)已知关于x的一次函数的图象如图所示,则可化简
为_________________.
三、一次函数的性质
14、 (2011贵州遵义,7,3分)若一次函数的函数值随的增大而减小,则的取值范围是
A. B. C. D.
15、(2011·广东广州)当实数x的取值使得有意义时,函数y=4x+1中y的取值范围是( ).
A.y≥-7 B.y≥9 C.y>9 D.y≤9
16、(2011浙江省,9,3分)如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则k的值不可能是( )
A.-5 B.-2 C.3 D. 5
17、 (2011四川广安,17,3分)写出一个具体的随的增大而减小的一次函数解析式____
18、 (2011湖南衡阳,15,3分)如图,一次函数的图象与轴的交点坐标为(2,0),则下列说法:①随的增大而减小;②>0;③关于的方程的解为.其中说法正确的有 (把你认为说法正确的序号都填上).
19、(2010·福建泉州)在一次函数中,随的增大而 (填“增大”或“减小”),当 时,y的最小值为 .
四、一次函数解析式的确定
20、(2011浙江义乌)一次函数y=2x-1的图象经过点(a,3),则a= ▲ .
21、(2011天津)已知一次函数的图象经过点(0,1),且满足随增大而增大,则该一次函数的解析式可以为_________________(写出一个即可).
22、(2011广东株洲)如图,直线l过A、B两点,A(,),B(,),则直线l的解析式为 .
23、(2011江西)将完全相同的平行四边形和完全相同的菱形镶嵌成如图所示的图案。设菱形中较小角为x度,平行四边形中较大角为y度,则y与x的关系式是 。
24、 (2011湖南怀化,7,3分)在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为
A.y=x+1 B.y=x-1 C.y=x D. y=x-2
25、(2010·四川乐山)已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是-2≤y≤4,则kb的值为( )
A.12 B.-6 C.-6或-12 D.6或12
26、(2010·山东聊城)如图,过点Q(0,3.5)的一次函数与正比例函数y=2x的图象相交于点P,能表示这个一次函数图象的方程是( )
A.3x-2y+3.5=0 B.3x-2y-3.5=0 C.3x-2y+7=0 D.3x+2y-7=0
五、一次函数与方程(组)、不等式的关系
27、(2011贵州毕节,16,5分)已知一次函数的图象如图所示,
则不等式的解集是 。
3
0
1.5
x
y
(第16题)
28、 (2011吉林长春,13,3分)如图,一次函数的图象经过点A.当时,的取值范围是________.
29、(2011四川乐山8,3分)已知一次函数的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式的解集为
A.x<-1 B.x> -1 C. x>1 D.x<1
30、(2010·湖北咸宁)如图,直线:与直线:相交于点P(,2),则关于的不等式≥的解集为 .
31、 (2011山东枣庄,10,3分)如图所示,函数和的图象相交于(-1,1),(2,2)两点.当时,x的取值范围是( )
(-1,1)
(2,2)
x
y
O
A.x<-1 B.—1<x<2 C.x>2 D. x<-1或x>2
32、((2011浙江杭州,17,6)点A,B,C,D的坐标如图,求直线AB与直线CD的交点坐标.
33、(2009·浙江台州)如图,直线:与直线:相交于点.
(1)求的值;
(2)不解关于的方程组 请你直接写出它的解;
(3)直线:是否也经过点?请说明理由.
六、与一次函数有关个面积问题
34、 (2011湖北黄石,10,3分)已知梯形ABCD的四个顶点的坐标分别为A(-1,0),B(5,0),C(2,2),D(0,2),直线y=kx+2将梯形分成面积相等的两部分,则k的值为
A. - B. - C. - D. -
35、(2011广西梧州,10,3分)如图4,在平面直角坐标系中,直线y=x-与矩形ABCD的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是
(A) (B)
(C) (D)
y
y
A
B
O
E
F
C
图4
36、(2011山东威海,18,3分)如图,直线轴于点,直线轴于点,直线轴于点,…直线轴于点.函数的图象与直线,,,…分别交于点,,,…;函数的图象与直线,,,…分别交于点,,,….如果的面积记作,四边形的面积记作,四边形的面积记作,…四边形的面积记作,那么 .
37、(2010·浙江绍兴)在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与x,y轴分别交于点A,B,则△OAB为此函数的坐标三角形.
(1)求函数y=x+3的坐标三角形的三条边长;
(2)若函数y=x+b(b为常数)的坐标三角形周长为16,求此三角形面积.
38、(2010·新疆乌鲁木齐)如图,在平面直角坐标系中,直线分别交轴、轴于点将绕点顺时针旋转90后得到.
(1)求直线的解析式;
(2)若直线与直线相交于点,求的面积.
七、一次函数的应用
39、(2011江苏泰州,17,3分)“一根弹簧原长10cm,在弹性限度内最多可挂质量为5kg的物体,挂上物体后弹簧伸长的长度与所挂物体的质量成正比, ,则弹簧的总长度y(cm)与所挂物体质量x(kg)之间的函数关系式是y=10+0.5x (0≤x≤5).”
王刚同学在阅读上面材料时就发现部分内容被墨迹污染,被污染部分是确定函数关系式的一个条件,你认为该条件可以是: (只需写出一个).
40、(2011山东泰安)某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为每件25元时,可卖出105件,而售价每上涨1元,就少卖5元。
(1)当售价定为每件30元时,一个月可获利多少元?
(2)当倍价定为每件多少元时,一个月的获利最大?最大利润是多少元?
41、(2011湖北随州)今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现有A、B两水库各调出14万吨水支援甲、乙两地抗旱.从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地45千米.
⑴设从A水库调往甲地的水量为x万吨,完成下表
调出地
水量/万吨
调入地
甲
乙
总计
A
x
14
B
14
总计
15
13
28
⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)
42、(2011宁波市)我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元,相关资料表明:甲、乙两种树苗的成活率分别为85%,90%,
(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?
(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?
(3)在(2)的条件下,应如何选购树苗,使购买的树苗的费用最低?并求出最低费用.
43、 (2011陕西)2011年4月28日 ,以“天人长安,创意自然-------城市与自然和谐共生”为主题的世界园艺博览会在西安隆重开园.这次世园会的门票分为个人票、团体票两大类,其中个人票设置有三种:
票的种类
夜票(A)
平日普通票(B)
指定日普通票(C)
单价(元/张)
60
100
150
某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中B种票张数是A种票张数的3倍还多8张.设需购A种票张数为x,C种票张数为y.
(1)写出y与x 之间的函数关系式;
(2)设购票总费用为w元,求出w(元)与x(张)之间的函数关系式;
(3)若每种票至少购买1张,其中购买A种票不少于20张,则共有几种购票方案?并求出购票总费用最少时,购买A、B、C三种票的张数.
44、(2011湖南益阳)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.
(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?
(2)设每月用水量为吨,应交水费为y元,写出y与之间的函数关系式;
(3)小英家3月份用水24吨,她家应交水费多少元?
45、(2011四川乐山)某学校的复印任务原来由甲复印社承接,其收费y(元)与复印页数x(页)的关系如下表:
x(页)
100
200
400
1000
…
y(元)
40
80
160
400
⑴、若y与x满足初中学过的某一函数关系,求函数的解析式;
⑵、现在乙复印社表示:若学校先按每月付给200元的承包费,则可按每页0.15元收费。则乙复印社每月收费y(元)与复印页数x(页)的函数关系为 ;
⑶、在给出的坐标系内画出(1)、(2)中的函数图象,并回答每月复印页数在1200左右应选择哪个复印社?
46、(2010·甘肃)如图所示是一个家用温度表的表盘.其左边为摄氏温度的刻度和读数(单位℃),右边为华氏温度的刻度和读数(单位℉).左边的摄氏温度每格表示1℃,而右边的华氏温度每格表示2℉.已知表示-40℃与-40℉的刻度线恰好对齐(在一条水平线上),而表示50℃与122℉的刻度线恰好对齐.
(1)若摄氏温度为x℃时,华氏温度表示为y℉,求y与x的一次函数关系式;
(2)当摄氏温度为0℃时,温度表上华氏温度一侧是否有刻度线与0℃的刻度线对齐?若有,是多少华氏度?
八、一次函数图象的应用
47、(2011浙江绍兴,9,4分)小敏从地出发向地行走,同时小聪从地出发向地行走,如图所示,相交于点的两条线段分别表示小敏、小聪离地的距离与已用时间之间的关系,则小敏、小聪的速度分别是( )
(第8题图)
A.3km/h和4km/h B.3km/h和3km/h C.4km/h和4km/h D.4km/h和3km/h
48、(2011江苏宿迁,25,10分)某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.
(1)有月租费的收费方式是 ▲ (填①或②),月租费是 ▲ 元;
(2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;
(第25题)
(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.
49、(2011辽宁大连,23,10分)如图10,某容器由A、B、C三个长方体组成,其中A、B、C的底面积分别为25cm2、10cm2、5cm2,C的容积是容器容积的(容器各面的厚度忽略不计).现以速度v(单位:cm3/s)均匀地向容器注水,直至注满为止.图11是注水全过程中容器的水面高度h(单位:cm)与注水时间t(单位:s)的函数图象.
(1)在注水过程中,注满A所用时间为______s,再注满B又用了_____s;
O
t/s
h/cm
10
18
12
图11
(2)求A的高度hA及注水的速度v;
图10
A
B
C
(3)求注满容器所需时间及容器的高度.
50、 (2011江苏南京,22,7分)小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min才乘上缆车,缆车的平均速度为180 m/min.设小亮出发x min后行走的路程为y m.图中的折线表示小亮在整个行走过程中y与x的函数关系.
⑴小亮行走的总路程是____________㎝,他途中休息了________min.
⑵①当50≤x≤80时,求y与x的函数关系式;
②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?
30
50
1950
3000
80
x/min
y/m
O
(第22题)
51、(2011江苏泰州,25,10分)小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min的速度从邮局沿同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为 S1 m ,小明爸爸与家之间的距离为S2 m,,图中折线OABD,线段EF分别是表示S1、S2与t之间函数关系的图像.
(1) 求S2与t之间的函数关系式:
(2) 小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?
52、(2011四川广元,19,8分)小李师傅驾车到某地办事,汽车出发前油箱中有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.
(1)请问汽车行驶多少小时后加油,中途加油多少升?
(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;
(3)已知加油前后汽车都以70千米/小时的速度匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.
53、(2011浙江金华,22,10分)某班师生组织植树活动,上午8时从学校出发,到植树地点后原路返校,如图为师生离校路程s与时间t之间的图象.请回答下列问题:
(1)求师生何时回到学校?
(2)如果运送树苗的三轮车比师生迟半小时出发,与师生同路匀速前进,早半个小时到达植树地点,请在图中,画出该三轮车运送树苗时,离校路程s与时间t之间的图象,并结合图象直接写出三轮车追上师生时,离学校的路程;
(3)如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求14时前返回学校,往返平均速度分别为每小时10km、8km.现有A、B、C、D四个植树点与学校的路程分别是13km,15km、17km、19km,试通过计算说明哪几个植树点符合要求.
54、(2011河北,24,9分)已知A,B两地的路程为240千米.某经销商每天都要用汽车或火车将x吨保鲜品一次性由A地运往B地,受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预定.
现有货运收费项目及收费标准表、行驶路程s(千米)与行驶时间t(时)的函数图象(如图13—1)、上周货运量折现统计图(如图13—2)等信息如下:
货运收费项目及收费标准表
运输工具
运输费单价
元/(吨·时)
冷藏费单价
元/(吨·时)
固定费用
元/次
汽车
2
5
200
火车
1.6
5
2280
(1)汽车的速度为 千米/时,
火车的速度为 千米/时;
(2)设每天用汽车和火车运输的总费用分别为y汽(元)和y火(元),分别求y汽、和y火与x的函数关系式(不必写出x的取值范围),及x为何值时y汽>和y火;
(总费用=运输费+冷藏费+固定费用)
(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?
55、(2011江苏淮安,27,2分)小华观察钟面(题27-1图),了解到钟面上的分针每小时旋转360度,时针每小时旋转30度.他为了进一步研究钟面上分针与时针的旋转规律,从下午2:00开始对钟面进行了一个小时的观察.为了研究方便,他将分针与时针原始位置OP(题27-2图)的夹角记为y1度,时针与原始位置OP的夹角记为y2度(夹角是指不大于平角的角),旋转时间记为t分钟,观察结束后,他利用所得的数据绘制成图象(题27-3图),并求出了y1与t的函数关系式:.
请你完成:
(1)求出题27-3图中y2与t的函数关系式;
(2)直接写出A、B两点的坐标,并解释这两点的实际意义;
(3)若小华继续观察一小时,请你在题27-3图中补全图象.
56、 (2011江苏扬州,27,12分)如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形块放其中(圆柱形铁块的下底面完全落在水槽底面上)现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示。根据图象提供的信息,解答下列问题:
(1)图2中折线ABC表示 槽中的深度与注水时间之间的关系,线段DE表示 槽中的深度与注水时间之间的关系(以上两空选填“甲”、或“乙”),点B的纵坐标表示的实际意义是
(2)注水多长时间时,甲、乙两个水槽中的水的深度相同?
(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;
(4)若乙槽中铁块的体积为112立方厘米(壁厚不计),求甲槽底面积(直接写结果)。
三 反比例函数
一、反比例函数解析式的确定
1、(2011浙江温州)已知点P(-l,4)在反比例函数的图象上,则k的值是( )
A. B. C.4 D.-4
2. (2011江苏扬州)某反比例函数的图象经过点(-1,6),则下列各点中,此函数图象也经过的点是( )
A. (-3,2) B. (3,2) C. (2,3) D. (6,1)
3. (2011山东威海,5,3分)下列各点中,在函数图象上的是( )
A.(-2,-4) B.(2,3) C.(-1,6) D.
4、(2011甘肃兰州)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上。若点A的坐标为(-2,-2),则k的值为
A.1 B.-3 C.4 D.1或-3
x
y
O
A
B
C
D
5、(2010·江苏淮安)若一次函数y=2x+l的图象与反比例函数图象的一个交点横坐标为l,则反比例函数关系式为 .
6、 (2011江西,19,6分)如图,四边形ABCD为菱形,已知A(0,4),B(-3,0)。
⑴求点D的坐标;
⑵求经过点C的反比例函数解析式.
二、反比例函数的图象
7、 (2011广东珠海)写出一个图象位于第二、第四象限的反比例函数的解析式 .
8、(2011江苏连云港)关于反比例函数的图象,下列说法正确的是( )
A.必经过点(1,1) B.两个分支分布在第二、四象限
C.两个分支关于x轴成轴对称 D.两个分支关于原点成中心对称
9、(2011福建福州)图1是我们学过的反比例函数图象,它的函数解析式可能是 ( )
A. B. C. D.
图1
10.(2011湖南邵阳,5,3分)已知点(1,1)在反比例函数(k为常数,k≠0)的图像上,则这个反比例函数的大致图像是( )
11、(2011湖北黄石,3,3分)若双曲线y=的图象经过第二、四象限,则k的取值范围是
A.k> B. k< C. k= D. 不存在
12、(2011广西南宁,7,3分)函数y=的图象是:
(A) (B) (C) (D)
13、 (2011四川广元,2,3分)反比例函数( a是常数)的图象分布在( C )
A.第一、第二象限 B.第一、第三象限
C. 第二、第四象限 D. 第三、第四象限
14、(2010·四川凉山州)已知函数是反比例函数,且图象在第二、四象限内,则m的值是( )
A.2 B.-2 C.±2 D.
15、(2009·湖北恩施)一张正方形的纸片,剪去两个一样的小矩形得到一个“”图案,如图4所示,设小矩形的长和宽分别为、,剪去部分的面积为20,若,则与的函数图象是( )
三、反比例函数的性质
16、(2011广东茂名)若函数的图象在其象限内的值随值的增大而增大,则的取值范围是
A. B. C. D.
17、(2011·江苏盐城)对于反比例函数y = ,下列说法正确的是( )
A.图象经过点(1,-1) B.图象位于第二、四象限
C.图象是中心对称图形 D.当x<0时,y随x的增大而增大
18、 (2011江苏淮安)如图,反比例函数的图象经过点A(-1,-2).则当x>1时,函数值y的取值范围是( )
A.y>1 B.0<y<1 C. y>2 D.0< y<2
19、(2011湖南娄底,4,3分)已知点A(x1,y1),B(x2,y2)是反比例函数y=的图象上的两点,若x1<0
21、 (2011浙江绍兴,13,5分) 若点是双曲线上的点,则
(填“>”,“<”“=”).
22、(2009·河南)点A(2,1)在反比例函数的图像上,当1﹤x﹤4时,y的取值范围是 .
23、(2010·广东肇庆)如图,是反比例函数y=的图象的一支,根据图象回答下列问题:
(1)图象的另一支在哪个象限?常数n的取值范围是什么?
(2)若函数的图象经过(3,1),求n的值.
(3)在这个函数图象的某一支上任取点A(a1,b1)和点B(a2,b2),如果a1<a2,试比较b1和b2的大小.
四、反比例函数中的比例系数的几何意义
24. (2011四川南充市,14,3分)过反比例函数y=(k≠0)图象上一点A,分别作x轴,y轴的垂线,垂足分别为B,C,如果⊿ABC的面积为3.则k的值为 .
25. ( 2011重庆江津, 6,4分)已知如图,A是反比例函数的图像上的一点,AB⊥x轴于点B,且△ABO的面积是3,则k的值是( )
A.3 B.-3 C.6 D.-6·
y
o
A
B
x
26、 (2011陕西,8,3分) 如图,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为 ( )
A.3 B.4 C.5 D.6
27、(2011山东东营,10,3分)如图,直线和双曲线交于A、B亮点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别是C、D、E,连接OA、OB、OP,设△AOC面积是S1、△BOD面积是S2、△POE面积是S3、则( )
A. S1<S2<S3 B. S1>S2>S3 C. S1=S2>S3 D. S1=S2
①x<0时,,
②△OPQ的面积为定值,
③x>0时,y随x的增大而增大
④MQ=2PM
⑤∠POQ可以等于90°
其中正确的结论是( )
A.①②④ B.②④⑤ C.③④⑤ D.②③⑤
29、(2009·湖北鄂州)如图,直线y=mx与双曲线y=交于A、B两点,过点A作AM⊥x轴,垂足为M,连结BM,若=2,则k的值是( )
A.2 B、m-2 C、m D、4
30、(2010·江苏苏州)如图,四边形是面积为4的正方形,函数()的图象经过点.
(1)求的值;
(2)将正方形分别沿直线、翻折,得到正方形、.设线段、分别与函数()的图象交于点、,求线段EF所在直线的解析式.
五、反比例函数的应用
31、(2008·湖北襄樊)在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度(单位:kg/m3)是体积(单位:m3)的反比例函数,它的图象如图所示,当时,气体的密度是( )
A.5kg/m3 B.2kg/m3 C.100kg/m3 D,1kg/m3
32、(2008·山西太原)人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体时是动态的,车速增加,视野变窄.当车速为50km/h时,视野为80度.如果视野(度)是车速(km/h)的反比例函数,求之间的关系式,并计算当车速为100km/h时视野的度数.
33、(2010·浙江嘉兴)一辆汽车匀速通过某段公路,所需时间t(h)与行驶速度v(km/h)满足函数关系:t=,其图象为如图所示的一段曲线且端点为A(40,1)和B(m,0.5).
(1)求k和m的值;
(2)若行驶速度不得超过60 km/h,则汽车通过该路段最少需要多少时间?
34、(2009·浙江衢州)水产公司有一种海产品共2 104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:
观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.
(1)写出这个反比例函数的解析式,并补全表格;
(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?
35、(2010·四川达州)近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4 mg/L,此后浓度呈直线型增加,在第7小时达到最高值46 mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图,根据题中相关信息回答下列问题:
(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;
(2)当空气中的CO浓度达到34 mg/L时,井下3 km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?
(3)矿工只有在空气中的CO浓度降到4 mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?
六、反比例函数与一次函数的综合
36、(2011广东湛江12,3分)在同一直角坐标系中,正比例函数与反比例函数的图像大致是
A B C D
37、 (2011浙江杭州,6,3)如图,函数和函数的图象相交于点M(2,m),N(-1,n),若,则x的取值范围是( )
A. B.
C. D.
38、(2011湖北宜昌,15,3分)如图,直线y=+2与双曲线y=在第二象限有两个交点,那么m的取值范围在数轴上表示为( )
39、(2011江苏南京,15,2分)设函数与的图象的交战坐标为(a,b),则的值为__________.
40、(2011湖北黄石,15,3分)若一次函数y=kx+1的图象与反比例函数y=的图象没有公共点,则实数k的取值范围是 。
41、(2011四川成都,25,4分)在平面直角坐标系中,已知反比例函数满足:当时,y随x的增大而减小.若该反比例函数的图象与直线都经过点P,且,则实数k=_________.
42、(2011浙江金华,16,4分)如图,将一块直角三角板OAB放在平面直角坐标系中,B(2,0),∠AOC=60°,点A在第一象限,过点A的双曲线为y= ,在x轴上取一点P,过点P作直线OA的垂线l,以直线l为对称轴,线段OB经轴对称变换后的像是O′B′.
(1)当点O′与点A重合时,点P的坐标是 .
(2)设P(t,0)当O′B′与双曲线有交点时,t的取值范围是 .
43、(2011安徽,21,12分)如图,函数的图象与函数()的图象交于A、B两点,与轴交于C点,已知A点坐标为(2,1),C点坐标为(0,3).
(1)求函数的表达式和B点的坐标;
(2)观察图象,比较当时,与的大小.
A
B
O
C
x
y
44、(2011甘肃兰州,24,7分)如图,一次函数的图象与反比例函数(x>0)的图象交于点P,PA⊥x轴于点A,PB⊥y轴于点B,一次函数的图象分别交x轴、y轴于点C、点D,且S△DBP=27,。
(1)求点D的坐标;
(2)求一次函数与反比例函数的表达式;
(3)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?
x
y
A
O
P
B
C
D
45、(2011重庆綦江,23,10分)如图,已知A(4,a),B(-2,-4)是一次函数y=kx+b的图象和反比例函数的图象的交点.
(1)求反比例函数和一次函数的解析式;
(2)求△AOB的面积.
46、(2011山东泰安,26 ,10分)如图,一次函数y=k1x+b的图象经过A(0,-2),B(1,0)两点,与反比例函数y=的图象在第一象限内的交点为M,若△OBM的面积为2。
(1)求一次函数和反比例函数的表达式。
(2)在x轴上存在点P,使AM⊥PM?若存在,求出点P的坐标,若不存在,说明理由。
47、(2011河南,20,9分)如图,一次函数与反比例函数的图象交于点和,与y轴交于点C.
(1)= ,= ;
(2)根据函数图象可知,当>时,x的取值范围是 ;
(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当:=3:1时,求点P的坐标.
48、(2011江苏南通,28,14分)(本小题满分14分)
如图,直线l经过点A(1,0),且与双曲线y=(x>0)交于点B(2,1),过点P(p,p-1)(p>1)作x轴的平行线分别交曲线y=(x>0)和y=-(x<0)于M,N两点.
(1)求m的值及直线l的解析式;
(2)若点P在直线y=2上,求证:△PMB∽△PNA;
(3)是否存在实数p,使得S△AMN=4S△APM?若存在,请求出所有满足条件的p的值;若不存在,请说明理由.
49、(2011四川成都,19,10分) 如图,已知反比例函数的图象经过点(,8),直线经过该反比例函数图象上的点Q(4,).
(1)求上述反比例函数和直线的函数表达式;
(2)设该直线与轴、轴分别相交于A 、B两点,与反比例函数图象的另一个交点为P,连结0P、OQ,求△OPQ的面积.
七、反比例函数的综合题
50、 (2010湖北孝感,15,3分) 如图,点A在双曲线上,点B在双曲线上,
且AB∥x轴,C、D在x轴上,若四边形ABCD的面积为矩形,则它的面积为 .
51、(2011江苏苏州,18,3分)如图,已知点A的坐标为(,3),AB⊥x轴,垂足为B,连接OA,反比例函数y=(k>0)的图象与线段OA、AB分别交于点C、D.若AB=3BD,以点C为圆心,CA的倍的长为半径作圆,则该圆与x轴的位置关系是___________(填“相离”、“相切”或“相交”)
52、(2011宁波)正方形的A1B1P1P2顶点P1、P2在反比例函数y= (x>0)的图象上,顶点A1、B1分别在x轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例函数y= (x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为 。
53、(2011湖北荆州,16,4分)如图,双曲线经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与轴正半轴的夹角,AB∥轴,将△ABC沿AC翻折后得到△AB'C,B'点落在OA上,则四边形OABC的面积是 .
54、(2011湖南衡阳,25,8分)如图,已知A,B两点的坐标分别为A(0,),B(2,0)直线AB与反比例函数的图像交与点C和点D(-1,a).
(1)求直线AB和反比例函数的解析式;
(2)求∠ACO的度数;
(3)将△OBC绕点O逆时针方向旋转α角(α为锐角),得到△OB′C′,当α为多少度时OC′⊥AB,并求此时线段AB′的长.
55、 (2011吉林,24,7分)如图,在平面直角坐标系中,直线y=-2x+2与x轴、y轴分别相交于点A、B,四边形ABCD是正方形,双曲线y= 在第一象限经过点D.
(1)求双曲线表示的函数解析式.
(2)将正方形ABCD沿x轴向左平移 个单位长度时,点C的对应点C'恰好落在(1)中的双曲线上.
四 二次函数
一、二次函数的图象
1、(2011黑龙江省哈尔滨市,4,3分)在抛物线上的一个点是( )
A.(1,0) B.(0,0) C.(0,-1) D.(1,1)
2、(2011广西桂林,11,3分)在平面直角坐标系中,将抛物线绕着它与y轴的交点旋转180°,所得抛物线的解析式是( ).
A. B.
C. D.
3、(2011湖北鄂州,15,3分)已知函数,则使y=k成立的x值恰好有三个,则k的值为( )
A.0 B.1 C.2 D.3
4、(2011 浙江湖州,10,3)如图,已知A、B是反比例面数 (k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形0MPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为
二、二次函数的顶点坐标
5、(2011福建泉州,15,4分)已知函数,当= 时,函数取最大值为 .
6、(2011山东济宁,12,3分)将二次函数化为的形式,则 .
7、(2011江苏淮安,14,3分)抛物线y=x2-2x-3的顶点坐标是 .
8、(2011广东肇庆,10,3分)二次函数有
A. 最大值-5 B. 最小值-5 C. 最大值-6 D. 最小值-6
三、二次函数的性质
9. (2011山东潍坊,14,3分)一个y关于x的函数同时满足两个条件:①图象过(2,1)点;②当x>0时,y随x的增大而减小.这个函数解析式为_________________________(写出一个即可)
10、(2011河南,11,3分)点、是二次函数的图象上两点,则与的大小关系为 (填“>”、“<”、“=”).
11、 (2011山东枣庄,18,4分)抛物线上部分点的横坐标,纵坐标的对应值如下表:
x
…
-2
-1
0
1
2
…
y
…
0
4
6
6
4
…
从上表可知,下列说法中正确的是 .(填写序号)
①抛物线与轴的一个交点为(3,0); ②函数的最大值为6;
③抛物线的对称轴是; ④在对称轴左侧,随增大而增大.
12、(2011湖南永州,13,3分)由二次函数,可知( )
A.其图象的开口向下 B.其图象的对称轴为直线
C.其最小值为1 D.当时,y随x的增大而增大
13、(2010湖南长沙,7,3分)如图,关于抛物线y=(x-1)2-2,下列说法错误的是( )
A.顶点坐标是(1,-2) B.对称轴是直线x=1
C.开口方向向上 D.当x>1时,y随x的增大而减小
(第7题)
-1
-2
-1
O
1
2
3
x
y
14、(2011陕西,10,3分)若二次函数的图像过三点,则大小关系正确的是( )
A. B.
C. D.
15、(2011山东烟台,10,4分)如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( )
A.m=n,k>h B.m=n ,k<h
C.m>n,k=h D.m<n,k=h
16、 (2011内蒙古呼和浩特市,8,3分)已知一元二次方程的一根为,在二次函数的图象上有三点、、,y1、y2、y3的大小关系是 ( )
A. B. C. D.
17、(2011江苏镇江,8,2分)已知二次函数,当自变量x取m时,对应的函数值大于0,当自变量x分别取m-1,m+1时对应的函数值、,则必值,满足 ( )
A. >0,>0 B. <0,<0 C.<0,>0 D.>0,<0
18、(2010·浙江台州)如图,点A,B的坐标分别为(1, 4)和(4, 4),抛物线的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为,则点D的横坐标最大值为( )
A.-3 B.1 C.5 D.8
19、(2011 浙江杭州,23, 10)设函数 (k为实数).
(1)写出其中的两个特殊函数,使它们的图象不全是抛物线,并在同一直角坐标系中,用描点法画出这两个特殊函数的图象;
(2)根据所画图象,猜想出:对任意实数K,函数的图象都具有的特征,并给予证明;
(3)对任意负实数k,当x
四、二次函数图象的平移
20、(2011山东滨州,7,3分)抛物线可以由抛物线平移得到,则下列平移过程正确的是( )
A.先向左平移2个单位,再向上平移3个单位
B.先向左平移2个单位,再向下平移3个单位
C.先向右平移2个单位,再向下平移3个单位
D.先向右平移2个单位,再向上平移3个单位
21、(2011四川广元,10,3分)在平面直角坐标系中,如果抛物线y=3x2不动,而把x轴、y轴分别向上、向右平移3个单位,那么在新坐标系下此抛物线的解析式是( D )
A. y=3(x-3)2+3 B. y=3(x-3)2-3
C. y=3(x+3)2+3 D. y=3(x+3)2-3
22、(2010·贵州毕节)把抛物线y=x+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x-3x+5,则( )
A.b=3,c=7 B.b=6,c=3 C.b=9,c=5 D.b=9,c=21
23、(2010·江苏徐州)平面直角坐标系中,若平移二次函数y=(x-2009)(x-2008)+4的图象,使其与x轴交于两点,且此两点的距离为1个单位,则平移方式为( )
A.向上平移4个单位 B.向下平移4个单位 C.向左平移4个单位 D.向右平移4个单位
24、(2011·江苏盐城)已知二次函数.
(1)在给定的直角坐标系中,画出这个函数的图象;
(2)根据图象,写出当y < 0时,x的取值范围;
(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式.
五、二次函数解析式的确定
25. (2011江苏无锡,9,3分)下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是 ( )
A.y = (x − 2)2 + 1 B.y = (x + 2)2 + 1
C.y = (x − 2)2 − 3 D.y = (x + 2)2 − 3
26、(2011江西b卷,6,3分)已知二次函数y=x2+bx-2的图象与x轴的一个交点为(1,0),则它与x轴的另一个交点坐标是( ).
A .(1,0) B.(2,0) C.(-2,0) D.(-1,0)
27、(2009·甘肃庆阳)图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是( )
A. B. C. D.
28、 (2011 浙江湖州,15,4)如图,已知抛物线经过点(0,-3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间你所确定的b的值是 .
29、(2011广东佛山,21,8)如图,已知二次函数y =ax²+bx+ c的图象经过A(-1,-1)、B(0,2)、C(1,3)
(1)求二次函数的解析式;
(2)画出二次函数的图象.
30、(2011江苏南通,27,12分)(本小题满分12分)
已知A(1,0), B(0,-1),C(-1,2),D(2,-1),E(4,2)五个点,抛物线y=a (x-1)2+k(a>0),经过其中三个点.
(1) 求证:C,E两点不可能同时在抛物线y=a (x-1)2+k(a>0)上;
(2) 点A在抛物线y=a (x-1)2+k(a>0)上吗?为什么?
(3) 求a和k的 值.
六、二次函数与方程、不等式的关系
31、(2011湖北襄阳,12,3分)已知函数的图象与x轴有交点,则k的取值范围是
A. B. C.且 D.且
32、(2011江苏苏州)如图,抛物线y=x2+1与双曲线y=的交点A的横坐标是1,则关于x的不等式+ x2+1<0的解集是 ( ▲ )
A.x>1 B.x<-1 C.0
x
y
A
33、(2011山东潍坊,12,3分)已知一元二次方程的两个实数根、满足和,那么二次函数的图象有可能是( )
34、(2009·陕西)根据下表中二次函数的自变量与函数的对应值,可判断该二次函数的图象与轴( )
A.只有一个交点 B.有两个交点,且它们分别在轴两侧
C.有两个交点,且它们均在轴同侧 D.无交点
35、(2010·山东日照)如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是 .
36. (2011江苏南京,24,7分)(7分)已知函数y=mx2-6x+1(m是常数).
⑴求证:不论m为何值,该函数的图象都经过y轴上的一个定点;
⑵若该函数的图象与x轴只有一个交点,求m的值.
37、 (2011广东省,15,6分)已知抛物线与x轴有交点.
(1)求c的取值范围;
(2)试确定直线y=cx+l经过的象限,并说明理由.
七、同一直角坐标系中不同函数的图象
38、 (2011山东德州6,3分)已知函数(其中)的图象
如下面右图所示,则函数的图象可能正确的是
第6题图
y
x
1
1
O
(A)
y
x
1
-1
O
(B)
y
x
-1
-1
O
(C)
1
-1
x
y
O
(D)
39、(2011四川凉山州)二次函数的图像如图所示,反比列函数与正比列函数在同一坐标系内的大致图像是( )
第12题
O
x
y
O
y
x
A
O
y
x
B
O
y
x
D
O
y
x
C
40、(2010·贵州毕节)函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是( )
八、图象信息处理题
41、(2011四川重庆,7,4分)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是( )
A. a>0 B. b<0 C. c<0 D. a+b+c>0
42、(2011江苏宿迁,8,3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是(▲)
A.a>0 B.当x>1时,y随x的增大而增大
C.c<0 D.3是方程ax2+bx+c=0的一个根
43、(2011浙江温州,9,4分)已知二次函数的图象(0≤x≤3)如图所示.关于该函数在所给自变量取值范围内,下列说法正确的是( )
A.有最小值0,有最大值3 B.有最小值-1,有最大值0
C.有最小值-1,有最大值3 D.有最小值-1,无最大值
44、(2011甘肃兰州,9,4分)如图所示的二次函数的图象中,刘星同学观察得出了下面四条信息:(1);(2)c>1;(3)2a-b<0;(4)a+b+c<0。你认为其中错误的有
A.2个 B.3个 C.4个 D.1个
x
y
-1
1
O
1
45、(2011山东日照,17,4分)如图,是二次函数 y=ax2+bx+c(a≠0)的图象的一部分, 给出下列命题 :①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为-3和1;④a-2b+c>0.其中正确的命题是 .(只要求填写正确命题的序号)
46、 (2011辽宁大连,16,3分)如图5,抛物线y=-x2+2x+m(m<0)与x轴相交于点A(x1,0)、B(x2,0),点A在点B的左侧.当x=x2-2时,y______0(填“>”“=”或“<”号).
图5
九、抛物线线型应用题
47、(2011广东株洲,8,3分)某广场有一喷水池,水从地面喷出,如图,以水平地面为轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4(单位:米)的一部分,则水喷出的最大高度是( )
A.4米 B.3米 C.2米 D.1米
48、(2011山东聊城,12,3分)某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为( )
A.50m B.100m
C.160m D.200m
49、(2010·内蒙古呼和浩特)如图①是抛物线形拱桥,当水面在n时,拱顶离水面2米,水面宽4米.若水面下降1米,则水面宽度将增加多少米?(图②是备用图)
50、 (2011山东滨州,25,12分)如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC。点A、B在抛物线造型上,且点A到水平面的距离AC=4O米,点B到水平面距离为2米,OC=8米。
(1) 请建立适当的直角坐标系,求抛物线的函数解析式;
(2) 为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA、PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)
(3) 为了施工方便,现需计算出点O、P之间的距离,那么两根支柱用料最省时点O、P之间的距离是多少?(请写出求解过程)
51、( 2011重庆江津, 26,12分) 在“五个重庆”建设中,为了提高市民的宜居环境,某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD是矩形,分别以AB、BC、CD、DA边为直径向外作半圆,若整个广场的周长为628米,高矩形的边长AB=y米,BC=x米.(注:取π=3.14)
(1)试用含x的代数式表示y;
(2)现计划在矩形ABCD区域上种植花草和铺设鹅卵石等,平均每平方米造价为428元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元;
①设该工程的总造价为W元,求W关于x的函数关系式;
②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若不能,请说明理由?
③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64·82万元,但要求矩形的边BC的长不超过AB长的三分之二,且建设广场恰好用完所有资金,问:能还完成该工程的建设任务?若能,请列出所有可能的设计方案,若不能,请说明理由·
A
B
C
D
第26题图
52、(2010·四川南充)如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).
(1)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内?
(2)当竖直摆放圆柱形桶多少个时,网球可以落入桶内?
十一、应用二次函数的最值解决实际问题
53、 (2011湖南怀化)出售某种手工艺品,若每个获利x元,一天可售出(8-x)个,则当x=________元时,一天出售该种手工艺品的总利润y最大.
54、(2011江苏徐州,25,8分)某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销售量就减少10件.
(1)请写出每月销售该商品的利润y(元)与单价上涨x(元)间的函数关系式;
(2)单价定为多少元时,每月销售商品的利润最大?最大利润为多少?
55、 (2011湖北黄冈,23,12分)我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,可获利润(万元)
⑴若不进行开发,求5年所获利润的最大值是多少?
⑵若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?
⑶根据⑴、⑵,该方案是否具有实施价值?
56、(2011湖北武汉市,23,10分)(本题满分10分)星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.
(1)若平行于墙的一边的长为y米,直接写出y与x之间的函数关系式及其自变量x的取值范围;
(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;
(3)当这个苗圃园的面积不小于88平方米时,试结合函数图像,直接写出x的取值范围.
57、(2011江苏无锡,25,10分)(本题满分10分)张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y (元/吨)与采购量x (吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C)。
(1)求y与x之间的函数关系式;
(2)已知老王种植水果的成本是2800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w最大?最大利润是多少?
y
x
0
4 000
8 000
20
40
A
B
C
58、(2011江苏盐城,26,10分)利民商店经销甲、乙两种商品. 现有如下信息:
信息1:甲、乙两种商品的进货单价之和是5元;
信息2:甲商品零售单价比进货单价多1元,
乙商品零售单价比进货单价的2倍少
1元.
信息3:按零售单价购买
甲商品3件和乙商品2件,
共付了19元.
请根据以上信息,解答下列问题:
(1)甲、乙两种商品的进货单价各多少元?
(2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元. 在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?
59、(2011四川重庆,25,10分)某企业为重庆计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
月份x
1
2
3
4
5
6
7
8
9
价格y1(元/件)
560
580
600
620
640
660
680
700
720
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1 与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=-0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;
(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1 a%.这样,在保证每月上万件配件销量的前提下,完成1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.(参考数据:992=9801,982=9604,972=9409,962=9216,952=9025)
60、(2009·湖北黄石)为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数(台)与补贴款额(元)之间大致满足如图①所示的一次函数关系.随着补贴款额的不断增大,销售量也不断增加,但每台彩电的收益(元)会相应降低且与之间也大致满足如图②所示的一次函数关系.
(1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元?
(2)在政府补贴政策实施后,分别求出该商场销售彩电台数和每台家电的收益与政府补贴款额之间的函数关系式;
(3)要使该商场销售彩电的总收益(元)最大,政府应将每台补贴款额定为多少?并求出总收益的最大值.
61、(2010·山东青岛)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:.
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?
(成本=进价×销售量)
十二、综合题
62、 (2011贵州贵阳,21,10分)
如图所示,二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.
(1)求m的值;(3分)
(2)求点B的坐标;(3分)
(3)该二次函数图象上有一点D(x,y)(其中x>0,y>0),使S△ABD=S△ABC,求点D的坐标.(4分)
63、(2011江苏泰州,27,12分)已知:二次函数y=x2+bx-3的图像经过点P(-2,5).
(1)求b的值,并写出当1<x≤3时y的取值范围;
(2)设点P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)在这个二次函数的图像上.
①当m=4时,y1、y2、y3能否作为同一个三角形的三边的长?请说明理由;
②当m取不小于5的任意实数时,y1、y2、y3一定能作为同一个三角形三边的长,请说明理由.
64、(2011陕西,24,10分))如图,二次函数的图象经过△AOB的三个顶点,其中A(-1,m),B(n,n) .
(1)求A、B的坐标;
(2)在坐标平面上找点C,使以A、O、B、C为顶点的四边形是平行四边形.
①这样的点C有几个?
②能否将抛物线平移后经过A、C两点?若能,求出平移后经过A、C两点的一条抛物线的解析式;若不能,说明理由.
65、(2011北京市,23,7分)在平面直角坐标系xOy中,二次函数的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)求点A的坐标;
(2)当时,求m的值;
(3)已知一次函数,点P(n,0)是x轴上的一个动点,在(2)的条件下,过点P垂直于x轴的直线交这个一次函数的图象于点M,交二次函数的图象于N.若只有当时,点M位于点N的上方,求这个一次函数的解析式.
66、(2011海南省,24,14分)如图11,已知抛物线(b为常数)经过坐标原点O,且与x轴交于另一点E,其顶点M在第一象限.
(1)求该抛物线所对应的函数关系式;
(2)设点A是该抛物线上位于x轴上方,且在其对称轴左侧的一个动点;过点A作x轴的平行线交该抛物线于另一点D,再作AB⊥x轴于点B,DC⊥x轴于点C.
①当线段AB、BC的长都是整数个单位长度时,求矩形ABCD的周长;
②求矩形ABCD的周长的最大值,并写出此时点A的坐标;
③当矩形ABCD的周长取得最大值时,它的面积是否也同时取得最大值?请判断并说明理由.
67、(2010·湖南益阳)如图,在平面直角坐标系中,已知A、B、C三点的坐标分别为A(-2,0),B(6,0),C(0,3).
(1)求经过A、B、C三点的抛物线的解析式;
(2)过C点作CD平行于x轴交抛物线于点D,写出D点的坐标,并求AD、BC的交点E的坐标;
(3)若抛物线的顶点为P,连结PC、PD,判断四边形CEDP的形状,并说明理由.
中考专题复习:初中数学函数知识归纳: 这是一份中考专题复习:初中数学函数知识归纳,共21页。
中考数学专题复习 专题39 中考函数综合类问题: 这是一份中考数学专题复习 专题39 中考函数综合类问题,文件包含中考数学专题复习专题39中考函数综合类问题教师版含解析docx、中考数学专题复习专题39中考函数综合类问题学生版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。
中考数学专题复习 专题38 反比例函数问题: 这是一份中考数学专题复习 专题38 反比例函数问题,文件包含中考数学专题复习专题38反比例函数问题教师版含解析docx、中考数学专题复习专题38反比例函数问题学生版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。

