![试卷 中考数学专题复习第五篇 全等与相似01](http://img-preview.51jiaoxi.com/2/3/5949501/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![试卷 中考数学专题复习第五篇 全等与相似02](http://img-preview.51jiaoxi.com/2/3/5949501/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![试卷 中考数学专题复习第五篇 全等与相似03](http://img-preview.51jiaoxi.com/2/3/5949501/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
试卷 中考数学专题复习第五篇 全等与相似
展开第五篇 全等与相似
一 全等
一、全等三角形的性质
1、(2009·山西太原)如图,,=30°,则的度数为( )
A.20° B.30° C.35° D.40°
2、(2011江西,16,3分)如图所示,两块完全相同的含30°角的直角三角形叠放在一起,且∠DAB=30°。有以下四个结论:①AF⊥BC ;②△ADG≌△ACF; ③O为BC的中点; ④AG:DE=:4,其中正确结论的序号是 .(错填得0分,少填酌情给分)
3、(2010·江苏南京)如图,四边形ABCD的对角线AC、BD相交于点O,△ABC≌△BAD.
求证:(1)OA=OB;(2)AB∥CD.
二、全等三角形的判定
4、(2011上海,5,4分)下列命题中,真命题是( ).
(A)周长相等的锐角三角形都全等; (B) 周长相等的直角三角形都全等;
(C)周长相等的钝角三角形都全等; (D) 周长相等的等腰直角三角形都全等.
5、(2011湖北十堰,6,3分)工人师傅常用角尺平分一个任意角。做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合。过角尺顶点C作射线OC。由做法得△MOC≌△NOC的依据是( )
A.AAS B.SAS C.ASA D.SSS
第6题图
6、 ( 2011江苏宿迁,7,3分)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是(▲)
A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA
7、(2009·黑龙江牡丹江)尺规作图作的平分线方法如下:以为圆心,任意长为半径画弧交、于、,再分别以点、为圆心,以大于长为半径画弧,两弧交于点,作射线由作法得的根据是( )
A.SAS B.ASA C.AAS D.SSS
8、(2011山东威海,6,3分)在△ABC中,AB>AC,点D、E分别是边AB、AC的中点,点F在BC边上,连接DE,DF,EF.则添加下列哪一个条件后,仍无法判定△BFD与△EDF全等( )
A. EF∥AB B.BF=CF
C.∠A=∠DFE D.∠B=∠DEF
9、(2011广西梧州,12,3分)如图6,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是
(A)△ACE≌△BCD (B)△BGC≌△AFC
(C)△DCG≌△ECF (D)△ADB≌△CEA
A
B
G
F
C
E
D
图6
10、(2011广东湛江,19,4)如图,点B,C,F,E在同一直线上, BC=FE,∠1
(填“是”或“不是”) ∠2的对顶角,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是 (只需写出一个).
11、(2011 江苏连云港)两块完全相同的三角形纸板ABC和DEF,按如图所示
的方式叠放,阴影部分为重叠部分,点O为边AC和DF的交点,不重叠的两部分△AOF与△DOC是否全等?为什么?
三、全等三角形的判定与性质的综合应用
12、(2010·黑龙江齐齐哈尔)如图所示,已知△ABC和△ADE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AG与BD交于点F,连结OC、FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,其中正确的结论个数( ).
A.1个 B.2个 C.3个 D.4个
13、(2011广西桂林,21,8分)求证:角平分线上的点到这个角的两边的距离相等.
已知:
求证:
证明:
14、(2011北京市,16,5分)如图,点A、B、C、D在同一条直线上,BE∥DF,,.
求证:.
15、(2011福建福州,17①,8分)如图6,于点,于点,交于点,且.
图6
求证.
16、(2011广东汕头,13,6分)已知:如图,E,F在AC上,AD∥CB且AD=CB,∠D=∠B.
求证:AE=CF.
17、(2011湖北武汉市,19,6分)如图,D,E,分 别 是 AB,AC 上 的 点 ,且AB=AC,AD=AE.求证∠B=∠C.
A
B
C
D
E
18、(2011山东菏泽,15(2),6分)已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC
19、(2011四川内江)如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连结BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.
A
B
C
D
E
20、(2011浙江台州,19,8分)如图,在平行四边形ABCD中,分别延长BA,DC到点E,使得AE=AB,CH=CD,连接EH,分别交AD,BC于点F,G。求证:△AEF≌△CHG.
21、(2011重庆,19,6分)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.
22、、(2010·山东德州)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.
(1)求证:AB=DC;
(2)试判断△OEF的形状,并说明理由.
二 相似
一、比例的基本性质
1、(2010·江苏淮安)在比例尺为1:200的地图上,测得A,B两地间的图上距离为4.5 cm,则A,B两地间的实际距离为 __________m.
2、(2011贵州毕节,17,5分)已知,则的值是 。
二、黄金分割
3、(2009·湖北孝感)美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高;下半身长与身高的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为( )
A. B. C. D.
三、相似多边形
4、(2011广东东莞,31,3分)将左下图中的箭头缩小到原来的,得到的图形是( )
5、(2009·山东济宁)如图,在长为、宽为的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( )
A. B. C. D.
6、(2010·山东烟台)手工制作课上,小红利用一些花布的边角料,剪裁后装裱手工画.下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相同,那么,每个图案中花边的内外边缘所围成的几何图形不相似的是( )
四、平行线分线段成比例
7、(2009·上海)如图,已知,那么下列结论正确的是( )
A. B. C. D.
8、、(2010·北京)如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD∶AB=3∶4,AE=6,则AC等于( )
A.3 B.4 C.6 D. 8
五、相似三角形的判定
9、(2011广东深圳,7,3分)如图2, 小正方形的边长均为1, 则下列图中的三角形(阴影部分)与△ABC相似的是( )
10、(2011陕西,9,3分) 如图,在□ABCD中,E、F分别是AD、CD 边上的点,连接BE、AF,他们相交于点G,延长BE交CD的延长线于点H,则图中的相似三角形共有( )
A.2对 B.3对 C.4对 D.5对
11、(2011江苏无锡,7,3分)如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA∶OC = OB∶OD,则下
列结论中一定正确的是 ( )
A.①和②相似 B.①和③相似
C.①和④相似 D.②和④相似
A
B
C
D
O
①
②⊙o⊙
③⊙o⊙
④⊙o⊙
(第7题)
12、(2010·山东临沂)如图,,添加一个条件使得∽ .
13、 (2011江苏宿迁)如图,在Rt△ABC中,∠B=90°,AB=1,BC=,以点C为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E.
(1)求AE的长度;
(2)分别以点A、E为圆心,AB长为半径画弧,两弧交于点F(F与C在AB两侧),连接AF、EF,设EF交弧DE所在的圆于点G,连接AG,试猜想∠EAG的大小,并说明理由.
(第28题)
六、相似三角形的性质
14、(2010·山东烟台)如图,△ABC中,点D在线段BC上,且△ABC∽△DBA,则下列结论一定正确的是( )
A.AB2=BC·BD B.AB2=AC·BD C.AB·AD=BD·BC D.AB·AD=AD·CD
15. (2011浙江台州,5,4分)若两个相似三角形的面积之比为1:4,则它们的周长之比为( )
A. 1:2 B. 1:4 C. 1:5 D. 1:16
16. (2011山东潍坊,3,3分)如图,△ABC中,BC = 2,DE是它的中位线,下面三个结论:⑴DE=1;⑵△ADE∽△ABC;⑶△ADE的面积与△ABC的面积之比为 1 : 4。其中正确的有( )
A . 0 个 B.1个 C . 2 个 D.3个
17.(2011·江苏苏州)如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于 ▲ (结果保留根号).
18、(2011黑龙江绥化,11,3分)如图,△ABC是边长为1的等边三角形,取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作;取BE边中点,作∥FB,∥EF,得到四边形,它的面积记作.照此规律作下去,则= .
七、相似三角形的实际应用
19、(2010·山东滨州)如图,A、B两点被池塘隔开,在AB外取一点C,连结AC、BC,在AC上取点M,使AM=3MC,作MN∥AB交BC于N,量得MN=38cm,则AB的长为
20、(2010·福建三明)如图是小玲设计用手电来测量某古城墙高度的示意图。在点P处放一水平的平面镜,光线从点A出发经平面镜反射后,刚好射到古城墙CD的顶端C处。已知AB⊥BD,CD⊥BD。且测得AB=1.4米,BP=2.1米,PD=12米。那么该古城墙CD的高度是______米。
21、(2011陕西,20,8分)一天,某校数学课外活动小组的同学们,带着皮尺去测量某河道因挖沙形成的“圆锥形坑”的深度,来评估这些深坑对河道的影响.如图是同学们选择(确保测量过程中无安全隐患)的测量对象,测量方案如下:
①先测量出沙坑坑沿圆周的周长约为34.54米;
②甲同学直立于沙坑坑沿圆周所在平面上,经过适当调整自己所处的位置,当他位于点B时,恰好他的视线经过沙坑坑沿圆周上的一点A看到坑底S(甲同学的视线起点C与点A、点S三点共线).经测量:AB=1.2米,BC=1.6米.
根据以上测量数据,求“圆锥形坑”的深度(圆锥的高).(π取3.14,结果精确到0.1米)
八、相似三角形的判定与性质的综合应用
22、 (2011北京市,4,4分) 如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,若,,则的值为( )
A. B. C. D.
23、(2011贵州遵义,10,3分)如图,在直角三角形ABC中(∠C=900),放
置边长分别3,4,的三个正方形,则x的值为
A. 5 B. 6
C. 7 D. 12
24. (2011吉林,9,2分)如图,△ABC中,点D、E分别为AB、AC的中点,连接DE,线段BE、CD相交于点O,若OD=2,则OC=
25. (2011黑龙江省哈尔滨市,20,3分)如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB的中点,DE⊥AC,垂足为E,若DE=2,CD=,则BE的长为 _。
26、(2011广东河源,16,7分)
如图5,点P在平行四边形ABCD的CD边上,连结BP并延长与 AD的延长线交于点Q.
(1)求证:△DQP∽△CBP;
(2)当△DQP≌△CBP,且AB=8时,求DP的长.
27、(2010·江苏苏州)如图,在中,,,BC=6.是边上的一个动点(异于、两点),过点分别作、边的垂线,垂足为、.设.
(1)在中,= ;
(2)当= 时,矩形的周长是14;
(3)是否存在的值,使得的面积、的面积与矩形的面积同时相等?请说出你的判断,并加以说明.
28、 (2011湖南怀化,21,10分)如图8,△ABC,是一张锐角三角形的硬纸片,AD是边BC上的高,BC=40cm,AD=30cm,从这张硬纸片上剪下一个长HG是宽HE的2倍的矩形EFGH,使它的一边EF在BC上,顶点G、H分别在AC,AB上,AD与HG的交点为M.
(1) 求证:
(2) 求这个矩形EFGH的周长.
29、(2011广东汕头,21,9分)如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△EFD绕点A 顺时针旋转,当DF边与AB边重合时,旋转中止.不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图(2).
(1)问:始终与△AGC相似的三角形有 及 ;
(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据2的情况说明理由);
(3)问:当x为何值时,△AGH是等腰三角形?
30、(2011湖北武汉市,24,10分)(本题满分10分)
(1)如图1,在△ABC中,点D,E,Q分别在AB,AC,BC上,且DE∥BC,AQ交DE于点P.求证:.
(2) 如图,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.
①如图2,若AB=AC=1,直接写出MN的长;
②如图3,求证MN2=DM·EN.
31、 (2011黑龙江省哈尔滨市,28,10分)已知:在△ABC中,BC=2AC, ∠DBC=∠ACB,BD=BC,CD交线段AB于点E。
(1)如图1,当∠ACB=90°时,则线段DE、CE之间的数量关系为 。
(2)如图2,当∠ACB=120°时,求证:DE=3CE;
(3)如图3,在(2)的条件下,点F是BC边的中点,连接DF,DF与AB交于点G,△DKG和△DBG关于直线DG对称(点B的对称点是点K),延长DK交AB于点H,若BH=10,求CE的长。
九、位似
32、. (2011山东东营,11,3分)如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是( )
A. B.
C. D.
B′
A′
第11题
-1
x
1
O
-1
1
y
B
A
C
33、(2011·广东广州)如图,以点O为位似中心,将五边形ABCDE放大后得到五边形A′B′C′D′E′,已知OA=10cm,OA′=20cm,则五边形ABCDE的周长与五边形A′B′C′D′E′的周长的比值是 .
34.(2011山东聊城,11,3分)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是( )
A.(3,2) B.(-2,-3)
C.(2,3)或(-2,-3) D.(3,2)或(-3,-2)
35、(2011河北,20,8分)如图10,在6×8网格图中,每个小正方形边长均为1,点O和△ABC的顶点均在小正方形的顶点.
(1)以O为位似中心,在网格图中作△A′B′C′和△ABC位似,且位似比为1︰2;
(2)连接(1)中的AA′,求四边形AA′C′C的周长.(结果保留根号)
36、(2010·江苏盐城)图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.
(1)以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;
(2)△A′B′C′绕点B′顺时针旋转,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.
中考数学专题练习17 全等与相似模型-对角互补模型: 这是一份中考数学专题练习17 全等与相似模型-对角互补模型,文件包含中考数学17全等与相似模型-对角互补模型教师版专题训练docx、中考数学17全等与相似模型-对角互补模型学生版专题训练docx等2份试卷配套教学资源,其中试卷共71页, 欢迎下载使用。
中考数学专题练习16 全等与相似模型-半角模型: 这是一份中考数学专题练习16 全等与相似模型-半角模型,文件包含中考数学16全等与相似模型-半角模型教师版专题训练docx、中考数学16全等与相似模型-半角模型学生版专题训练docx等2份试卷配套教学资源,其中试卷共74页, 欢迎下载使用。
2012年中考数学专题练习十三 图形的相似(与全等): 这是一份2012年中考数学专题练习十三 图形的相似(与全等),共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。