试卷 中考数学知识点+经典例题+真题训练 专题15 相交线与平行线含答案
展开专题15 相交线与平行线
一、相交线
1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
邻补角的性质:邻补角互补。
2.对顶角:一个角的两边分别是另一个角的两边的反向延长线,像这样的两个角互为对顶角。
对顶角的性质:对顶角相等。
3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
4.垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
5.同位角、内错角、同旁内角:
同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
二、平行线
1.平行线概念:在同一平面内,两条不想交的直线叫做平行线。记做a∥b
2.两条直线的位置关系:平行和相交。
3.平行线公理及其推论:
(1)经过已知直线外一点,有且只有一条直线与这条直线平行;
(2)如果两条直线都与第三条直线平行,那么这两条直线平行.
4.平行线的判定:
判定方法1:两条直线被第三条直线所截,同位角相等,两直线平行 ;
判定方法2:两条直线被第三条直线所截,内错角相等,两直线平行;
判定方法3:两条直线被第三条直线所截,同旁内角互补,两直线平行.
5.平行线的性质:
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
6.平行线的判定:
判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
7.证明的一般步骤
(1)根据题意,画出图形。
(2)根据题设、结论、结合图形,写出已知、求证。
(3)经过分析,找出由已知推出求证的途径,写出证明过程。
【例题1】(2019•河北省)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容
则回答正确的是( )
A.◎代表∠FEC B.@代表同位角
C.▲代表∠EFC D.※代表AB
【答案】C.
【解析】证明:延长BE交CD于点F,
则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).
又∠BEC=∠B+∠C,得∠B=∠EFC.
故AB∥CD(内错角相等,两直线平行).
【例题2】(2019广西河池)如图,,要使,则的大小是
A. B. C. D.
【答案】.
【解析】平行线的判定
如果,那么.
所以要使,则的大小是.故选:.
【例题3】(2019广西省贵港市)如图,直线,直线与,均相交,若,则 .
【答案】.
【解析】知识点是平行线的性质
如图,,
,
,
.
一、选择题
1.(2019•贵州省铜仁市)如图,如果∠1=∠3,∠2=60°,那么∠4的度数为( )
A.60° B.100° C.120° D.130°\
【答案】C.
【解答】∵∠1=∠3,
∴a∥b,
∴∠5=∠2=60°,
∴∠4=180°﹣60°=120°,
2.(2019广东深圳)如图,已知l1∥AB,AC为角平分线,下列说法错误的是( )
A.∠1=∠4 B.∠1=∠5 C.∠2=∠3 D.∠1=∠3
【答案】B
【解析】∵AC为角平分线,∴∠1=∠2.∵l1∥AB,∴∠4=∠2,∠3=∠2,∴∠1=∠4,∠1=∠3.故A、C、D正确.∵l1∥AB,∴∠5=∠1+∠2,故B错误.故选B.
3.(2019•湖北省鄂州市)如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=35°,则∠1的度数为( )
A.45° B.55° C.65° D.75°
【答案】B
【解析】根据平行线的性质和直角的定义解答即可.
如图,
作EF∥AB∥CD,
∴∠2=∠AEF=35°,∠1=∠FEC,
∵∠AEC=90°,
∴∠1=90°﹣35°=55°
4.(2019•海南省)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C两点,连结AC、BC.若∠ABC=70°,则∠1的大小为( )
A.20° B.35° C.40° D.70°
【答案】C
【解析】根据平行线的性质解答即可.
∵点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C,
∴AC=AB,
∴∠CBA=∠BCA=70°,
∵l1∥l2,
∴∠CBA+∠BCA+∠1=180°,
∴∠1=180°﹣70°﹣70°=40°
5.(2019广西北部湾)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为。
A. 60° B.65° C. 75° D.85°
【答案】C.
【解析】如图:
∵∠BCA=60°,∠DCE=45°,
∴∠2=180°-60°-45°=75°,
∵HF∥BC,
∴∠1=∠2=75°.
6.(2019•四川省凉山州)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为( )
A.135° B.125° C.115° D.105°
【答案】D
【解析】直接利用三角形的外角性质得出∠ACD度数,再利用平行线的性质分析得出答案.
∵∠B=30°,∠A=75°,
∴∠ACD=30°+75°=105°,
∵BD∥EF,
∴∠E=∠ACD=105°.
7.(2019湖北十堰)如图,直线a∥b,直线AB⊥AC,若∠1=50°,则∠2=( )
A.50° B.45° C.40° D.30°
【答案】C
【解析】根据垂直的定义和余角的定义列式计算得到∠3,根据两直线平行,内错角相等可得∠3=∠1.
解:∵直线AB⊥AC,
∴∠2+∠3=90°.
∵∠1=50°,
∴∠3=90°﹣∠1=40°,
∵直线a∥b,
∴∠1=∠3=40°
8.(2019湖北仙桃)如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF的度数是( )
A.20° B.25° C.30° D.35°
【答案】D
【解析】∵CD∥AB,
∴∠AOD+∠D=180°,
∴∠AOD=70°,
∴∠DOB=110°,
∵OE平分∠BOD,
∴∠DOE=55°,
∵OF⊥OE,
∴∠FOE=90°,
∴∠DOF=90°﹣55°=35°,
∴∠AOF=70°﹣35°=35°
9. (2019湖北孝感)如图,直线l1∥l2,直线l3与l1,l2分别交于点A,C,BC⊥l3交l1于点B,若∠1=70°,则∠2的度数为( )
A.10° B.20° C.30° D.40°
【答案】B
【解析】解:∵l1∥l2,
∴∠1=∠CAB=70°,
∵BC⊥l3交l1于点B,
∴∠ACB=90°,
∴∠2=180°﹣90°﹣70°=20°,
10.(2019湖南湘西)如图,直线a∥b,∠1=50°,∠2=40°,则∠3的度数为( )
A.40° B.90° C.50° D.100°
【答案】B
【解析】∵a∥b,
∴∠4=∠1=50°,
∵∠2=40°,
∴∠3=90°,
故选:B.
11.(2019湖南邵阳)如图,已知两直线与被第三条直线所截,下列等式一定成立的是
A. B. C. D.
【答案】D
【解析】与是同为角,与是内错角,与是同旁内角,由平行线的性质可知,选项,,成立的条件为时,而与是邻补角,故正确.
12.(2019贵州遵义)如图,∠1+∠2=180°,∠3=104°,则∠4的度数是( )
A. 74° B. 76° C. 84° D. 86°
【答案】B
【解析】平行线的性质与判定
由于∠1+∠2=180°可知两直线平行,所以∠3的对顶角与∠4互补,因为∠3=104°,
所以,∠4的度数是76°,所以选B。
二、填空题
13.(2019湖南郴州)如图,直线a,b被直线c,d所截.若a∥b,∠1=130°,∠2=30°,则∠3的度数为 度.
【答案】100
【解析】∵a∥b,
∴∠3=∠4,
∵∠1=∠2+∠4=∠2+∠3,∠1=130°,∠2=30°,
∴130°=30°+∠3,
解得:∠3=100°.
故答案为:100.
14.(2019年广西柳州市)如图,若AB∥CD,则在图中所标注的角中,一定相等的角是___________.
【答案】∠1=∠3
【解析】平行线的判定
AB∥CD,根据两直线平行,同位角相等得∠1=∠3,因此本题填∠1=∠3.
15.(2019吉林长春)如图,直线MN//PQ,点A、B分别在MN、PQ上,∠MAB=33°.过线段上的点C作CD⊥AB交PQ于点D,则∠CDB的大小为 度
【答案】57.
【解析】本题主要考查了平行线的性质以及三角形内角和定理,直接利用平行线的性质得出∠ABD的度数,再结合三角形内角和定理得出答案.
∵直线MN∥PQ,
∴∠MAB=∠ABD=33°,
∵CD⊥AB,
∴∠BCD=90°,
∴∠CDB=90°-33°=57°.
16.(2019江苏镇江)如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD是等边三角形,∠A=20°,则∠1= .
【答案】40°
【解析】本题考查了平行线的性质、等边三角形的性质及三角形内角和定理,根据等边三角形的性质及三角形内角和定理,先求出∠ACD的度数是解题的关键.
∵△BCD是等边三角形,
∴∠B=∠BCD=60°.
∵∠A=20°,
∴∠ACB=180°-∠A-∠B=100°.
∴∠ACD=∠ACB-∠BCD=40°.
∵a∥b,
∴∠1=∠ACD=40°.
17.(2019江苏镇江)如图,直线,的顶点在直线上,边与直线相交于点.若是等边三角形,,则 .
【答案】40
【解析】是等边三角形,
,
,
,
由三角形的外角性质可知,
18.(2019•四川省绵阳市)如图,AB∥CD,∠ABD的平分线与∠BDC的平分线交于点E,则∠1+∠2=______.
【答案】90°
【解析】∵AB∥CD,∴∠ABD+∠CDB=180°,
∵BE是∠ABD的平分线,∴∠1=∠ABD,
∵BE是∠BDC的平分线,∴∠2=∠CDB,∴∠1+∠2=90°,故答案为:90°.
根据平行线的性质可得∠ABD+∠CDB=180°,再根据角平分线的定义可得∠1=∠ABD,∠2=∠CDB,进而可得结论.
19.(2019湖南益阳)如图,直线AB∥CD,OA⊥OB,若∠1=142°,则∠2= 度.
【答案】52.
【解析】根据平行线的性质解答即可.
∵AB∥CD,∴∠OCD=∠2,
∵OA⊥OB,∴∠O=90°,
∵∠1=∠OCD+∠O=142°,
∴∠2=∠1﹣∠O=142°﹣90°=52°
20.(2019•威海)如图,在四边形ABCD中,AB∥DC,过点C作CE⊥BC,交AD于点E,连接BE,∠BEC=∠DEC,若AB=6,则CD= .
【答案】3
【解析】延长BC、AD相交于点F,可证△EBC≌△EFC,可得BC=CF,则CD为△ABF的中位线,故CD=可求出.如图,延长BC、AD相交于点F,
∵CE⊥BC,∴∠BCE=∠FCE=90°,
∵∠BEC=∠DEC,CE=CE,
∴△EBC≌△EFC(ASA),∴BC=CF,
∵AB∥DC,∴AD=DF,
∴DC=.
三、解答题
21.(经典题)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.
【答案】69°.
【解析】由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质可求出∠AFE的度数.
∵∠AEC=42°,
∴∠AED=180°﹣∠AEC=138°,
∵EF平分∠AED,
∴∠DEF=∠AED=69°,
又∵AB∥CD,
∴∠AFE=∠DEF=69°.
试卷 中考数学知识点+经典例题+真题训练 专题20 矩形含答案: 这是一份试卷 中考数学知识点+经典例题+真题训练 专题20 矩形含答案,共27页。试卷主要包含了矩形的定义,矩形的性质,矩形判定定理,矩形的面积等内容,欢迎下载使用。
试卷 中考数学知识点+经典例题+真题训练 专题30 规律型问题含答案: 这是一份试卷 中考数学知识点+经典例题+真题训练 专题30 规律型问题含答案,共24页。试卷主要包含了数字猜想型,数式规律型,图形规律型,数形结合猜想型,解题方法,观察下列各式,砌成的“分等内容,欢迎下载使用。
试卷 中考数学知识点+经典例题+真题训练 专题31 轴对称含答案: 这是一份试卷 中考数学知识点+经典例题+真题训练 专题31 轴对称含答案,共29页。试卷主要包含了轴对称,平移,旋转等内容,欢迎下载使用。