专题28 函数的零点的问题-2021年高考数学微专题复习(新高考地区专用)练习
展开专题28 函数的零点的问题
一、题型选讲
题型一 、 函数零点个数判断与证明
可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。
例1、(2019苏州三市、苏北四市二调)定义在R上的奇函数f(x)满足f(x+4)=f(x),且在区间[2,4)上则函数的零点的个数为
【答案】: 5
【解析】:因为f(x+4)=f(x),可得f(x)是周期为4的奇函数,先画出函数f(x)在区间[2,4)上的图像,根据奇函数和周期为4,可以画出f(x)在R上的图像,由y=f(x)-log5| x|=0,得f(x)=log5| x|,分别画出y=f(x)和y=log5|x|的图像,如下图,由f(5)=f(1)=1,而log55=1,f(-3)=f(1)=1,log5|-3|<1,而f(-7)=f(1)=1,而log5|-7|=log57>1,可以得到两个图像有5个交点,所以零点的个数为5.
变式1、【2019年高考全国Ⅱ卷理数】已知函数.
(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;
【解析】(1)f(x)的定义域为(0,1)(1,+∞).
因为,所以在(0,1),(1,+∞)单调递增.
因为f(e)=,,所以f(x)在(1,+∞)有唯一零点x1,即f(x1)=0.又,,故f(x)在(0,1)有唯一零点.
综上,f(x)有且仅有两个零点.
变式2、【2020年高考浙江】已知,函数,其中e=2.71828…是自然对数的底数.(Ⅰ)证明:函数在上有唯一零点;
【解析】(Ⅰ)因为,,所以在上存在零点.
因为,所以当时,,故函数在上单调递增,
所以函数以在上有唯一零点.
题型二、 函数零点问题中参数的范围
已知函数零点的个数,确定参数的取值范围,常用的方法和思路:
(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.
(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.
(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解.
例2、【2019年高考浙江】已知,函数.若函数恰有3个零点,则
A.a<–1,b<0 B.a<–1,b>0
C.a>–1,b<0 D.a>–1,b>0
【答案】C
【解析】当x<0时,y=f(x)﹣ax﹣b=x﹣ax﹣b=(1﹣a)x﹣b=0,得x,
则y=f(x)﹣ax﹣b最多有一个零点;
当x≥0时,y=f(x)﹣ax﹣bx3(a+1)x2+ax﹣ax﹣bx3(a+1)x2﹣b,
,当a+1≤0,即a≤﹣1时,y′≥0,y=f(x)﹣ax﹣b在[0,+∞)上单调递增,
则y=f(x)﹣ax﹣b最多有一个零点,不合题意;
当a+1>0,即a>﹣1时,令y′>0得x∈(a+1,+∞),此时函数单调递增,
令y′<0得x∈[0,a+1),此时函数单调递减,则函数最多有2个零点.
根据题意,函数y=f(x)﹣ax﹣b恰有3个零点⇔函数y=f(x)﹣ax﹣b在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点,
如图:
∴0且,
解得b<0,1﹣a>0,b(a+1)3,则a>–1,b<0.
故选C.
变式1、【2018年高考全国Ⅱ卷理数】已知函数.若在只有一个零点,求.
【解析】设函数.
在只有一个零点当且仅当在只有一个零点.
(i)当时,,没有零点;
(ii)当时,.
当时,;当时,.
所以在单调递减,在单调递增.
故是在的最小值.
①若,即,在没有零点;
②若,即,在只有一个零点;
③若,即,由于,所以在有一个零点,
由(1)知,当时,,所以.
故在有一个零点,因此在有两个零点.
综上,在只有一个零点时,.
变式2、(2020届山东省潍坊市高三上学期统考)函数若函数只有一个零点,则可能取的值有( )
A.2 B. C.0 D.1
【答案】ABC
【解析】∵只有一个零点,
∴函数与函数有一个交点,
作函数函数与函数的图象如下,
结合图象可知,当时;函数与函数有一个交点;
当时,,可得,令可得,所以函数在时,直线与相切,可得.
综合得:或.
故选:ABC.
变式3、(2020届山东省滨州市三校高三上学期联考)已知函数(e为自然对数的底),若且有四个零点,则实数m的取值可以为( )
A.1 B.e C.2e D.3e
【答案】CD
【解析】
因为,可得,即为偶函数,
由题意可得时,有两个零点,
当时,,
即时,,
由,可得,
由相切,设切点为,
的导数为,可得切线的斜率为,
可得切线的方程为,
由切线经过点,可得,
解得:或(舍去),即有切线的斜率为,
故,
故选:CD.
二、达标训练
1、(2020·山东省淄博实验中学高三上期末)已知函数.若函数在上无零点,则的最小值为________.
【答案】
【解析】因为在区间上恒成立不可能,故要使函数在上无零点,只要对任意的,恒成立,即对任意的,恒成立.
令,,则,
再令,,则,
故在上为减函数,于是,
从而,于是在上为增函数,所以,
故要使恒成立,只要,
综上,若函数在上无零点,则的最小值为.
故答案为:
2、(2020届浙江省台州市温岭中学3月模拟)已知函数在区间上有零点,则的取值范围是( )
A. B. C. D.
【答案】B
【解析】不妨设,为函数的两个零点,其中,,
则,.
则,
由,,所以
,
可令,,
当,恒成立,所以.
则的最大值为,此时,
还应满足,显然,时,,.
故选:B.
3、(2020届浙江省嘉兴市3月模拟)已知函数,,若存在实数使在上有2个零点,则的取值范围为________.
【答案】.
【解析】已知实数使在上有2个零点,等价于与的函数图象在上有2个交点,
显然与x轴的交点为,的图象关于对称,
当时,若要有2个交点,由数形结合知m一定小于e,即;
当时,若要有2个交点,须存在a使得在有两解,所以,
因为,即,显然存在这样的a使上述不等式成立;
由数形结合知m须大于在处的切线与x轴交点的横坐标,即
综上所述,m的范围为.
故答案为:
4、(2020届山东省德州市高三上期末)已知函数(为常,若为正整数,函数恰好有两个零点,求的值.
【解析】因为为正整数,
若,则,,
由(2)知在和单调递增,在单调递减,
又,所以在区间内仅有实根,,
又,所以在区间内仅有实根.
此时,在区间内恰有实根;
若,在单调递增,至多有实根.
若,,
令,则,,,
所以.
由(2)知在单调递减,在和单调递增,
所以,所以在至多有实根.
综上,.
专题27 函数单调性含参问题的研究-2021年高考数学微专题复习(新高考地区专用)练习: 这是一份专题27 函数单调性含参问题的研究-2021年高考数学微专题复习(新高考地区专用)练习,文件包含专题27函数单调性含参问题的研究原卷版docx、专题27函数单调性含参问题的研究解析版docx等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。
专题04 函数的性质-2021年高考数学微专题复习(新高考地区专用)练习: 这是一份专题04 函数的性质-2021年高考数学微专题复习(新高考地区专用)练习,试卷主要包含了题型选讲,函数的单调性, 函数的周期性,单调性与奇偶性的结合等内容,欢迎下载使用。
专题34 多元问题的处理-2021年高考数学微专题复习(新高考地区专用)练习: 这是一份专题34 多元问题的处理-2021年高考数学微专题复习(新高考地区专用)练习,文件包含专题34多元问题的处理原卷版docx、专题34多元问题的处理解析版docx等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。