专题45 空间几何体的折叠问题-2021年高考数学微专题复习练习(新高考地区专用)
展开题型一 、展开问题
例1、【2020年高考全国Ⅰ卷理数】如图,在三棱锥P–ABC的平面展开图中,AC=1,,AB⊥AC,AB⊥AD,∠CAE=30°,则cs∠FCB=______________.
例2、(2017南京三模)如图,在直三棱柱ABC-A1B1C1中,AB=1,BC=2,BB1=3,∠ABC=90°,点D为侧棱BB1上的动点.当AD+DC1最小时,三棱锥D-ABC1的体积为 ▲ .
A
C
B
A1
B1
C1
D
题型二、折叠问题
例3、【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.
(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;
(2)求图2中的二面角B−CG−A的大小.
例4、【2018年高考全国Ⅰ卷理数】如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.
(1)证明:平面平面;
(2)求与平面所成角的正弦值.
例5、(2020届山东省德州市高三上期末)如图(1),边长为的正方形中,,分别为、上的点,且,现沿把剪切、拼接成如图(2)的图形,再将,,沿,,折起,使、、三点重合于点,如图(3).
(1)求证:;
(2)求二面角最小时的余弦值.
例6、(2020届浙江省宁波市余姚中学高考模拟)如图,为正三角形,且,,将沿翻折.
(1)若点的射影在上,求的长;
(2)若点的射影在中,且直线与平面所成角的正弦值为,求的长.
题型三、折叠的综合性问题
例7、(2020届山东省滨州市高三上期末)已知菱形中,,与相交于点,将沿折起,使顶点至点,在折起的过程中,下列结论正确的是( )
A.B.存在一个位置,使为等边三角形
C.与不可能垂直D.直线与平面所成的角的最大值为
例8、(2020届浙江省台州市温岭中学3月模拟)如图,在直角梯形中,,,,为中点,,分别为,的中点,将沿折起,使点到,到,在翻折过程中,有下列命题:
①的最小值为;
②平面;
③存在某个位置,使;
④无论位于何位置,均有.
其中正确命题的个数为( )
A.B.C.D.
二、达标训练
1、(2020届山东省潍坊市高三上学期统考)已知边长为2的等边三角形,为的中点,以为折痕进行折叠,使折后的,则过,,,四点的球的表面积为( )
A.B.C.D.
2、(2020届浙江省杭州市建人高复高三4月模拟)如图,点在正方体的表面上运动,且到直线与直线 的距离相等,如果将正方体在平面内展开,那么动点的轨迹在展开图中的形状是( )
A.B.
C.D.
3、如图,在正方形ABCD中,E,F分别是BC,CD的中点,G是EF的中点,现在沿AE,AF及EF将这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,则在这个空间图形中必有( )
A. AG⊥平面EFH B. AH⊥平面EFH
C. HF⊥平面AEF D. HG⊥平面AEF
4、【2020年高考浙江】已知圆锥的侧面积(单位:cm2)为,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是_______.
5、(2020届山东省济宁市高三上期末)下图是两个腰长均为的等腰直角三角形拼成的一个四边形,现将四边形沿折成直二面角,则三棱锥的外接球的体积为__________.
6、(2018南京、盐城、连云港二模)在边长为4的正方形ABCD内剪去四个全等的等腰三角形(如图1中阴影部分),折叠成底面边长为eq \r(2)的正四棱锥SEFGH(如图2),则正四棱锥SEFGH的体积为________.
(图1) (图2)
7、【天津市和平区2020届高考三模】如图甲所示的平面五边形PABCD中,PD=PA,AC=CD=BD=5,AB=1,AD=2,PD⊥PA,现将图甲所示中的△PAD沿AD边折起,使平面PAD⊥平面ABCD得如图乙所示的四棱锥P−ABCD.在如图乙所示中
(1)求证:PD⊥平面PAB;
(2)求二面角A−PB−C的大小;
(3)在棱PA上是否存在点M使得BM与平面PCB所成的角的正弦值为13?并说明理由.
2022高考数学一轮复习专题45 空间几何体的折叠问题(原卷): 这是一份2022高考数学一轮复习专题45 空间几何体的折叠问题(原卷),共6页。试卷主要包含了题型选讲,折叠问题,折叠的综合性问题等内容,欢迎下载使用。
2022高考数学一轮复习专题45 空间几何体的折叠问题(解析卷): 这是一份2022高考数学一轮复习专题45 空间几何体的折叠问题(解析卷),共16页。试卷主要包含了题型选讲,折叠问题,折叠的综合性问题等内容,欢迎下载使用。
新高考数学复习专题45 空间几何体的折叠问题(解析版): 这是一份新高考数学复习专题45 空间几何体的折叠问题(解析版),共20页。试卷主要包含了题型选讲,折叠问题,折叠的综合性问题等内容,欢迎下载使用。