物理人教版 (新课标)4 玻尔的原子模型教学设计
展开eq \([先填空])
1.玻尔原子模型
(1)原子中的电子在库仑力的作用下,绕原子核做圆周运动.
(2)电子绕核运动的轨道是量子化的.
(3)电子在这些轨道上绕核的转动是稳定的,且不产生电磁辐射.
2.定态
当电子在不同轨道上运动时,原子处于不同的状态,原子在不同的状态中具有不同的能量,即原子的能量是量子化的,这些量子化的能量值叫做能级,原子具有确定能量的稳定状态,称为定态.能量最低的状态叫做基态,其他的能量状态叫做激发态.
3.跃迁
当电子从能量较高的定态轨道(其能量记为Em)跃迁到能量较低的定态轨道(其能量记为En,m>n)时,会放出能量为hν的光子,该光子的能量hν=Em-En,这个式子被称为频率条件,又称辐射条件.
eq \([再判断])
1.玻尔的原子结构假说认为电子的轨道是量子化的.(√)
2.电子吸收某种频率条件的光子时会从较低的能量态跃迁到较高的能量态.(√)
3.电子能吸收任意频率的光子发生跃迁.(×)
eq \([后思考])
1.玻尔的原子模型轨道与卢瑟福的行星模型轨道是否相同?
【提示】 不同.玻尔的原子模型的电子轨道是量子化的,只有当半径的大小符合一定条件时才有可能.卢瑟福的行星模型的电子轨道是任意的,是可以连续变化的.
2.电子由高能量状态跃迁到低能量状态时,释放出的光子的频率可以是任意值吗?
【提示】 不可以.因各定态轨道的能量是固定的,由hν=Em-En可知,跃迁时释放出的光子的频率,也是一系列固定值.
eq \([合作探讨])
根据玻尔原子模型,原子核外的电子处于一系列不连续的轨道上,原子在不同的轨道又具有不同的能量.
探讨1:原子处于什么状态稳定,什么状态不稳定?
【提示】 原子处于基态时是稳定的,原子处于激发态时不稳定.
探讨2:原子的能量与电子的轨道半径具有怎样的对应关系?
【提示】 原子的能量与电子的轨道半径相对应,轨道半径大,原子的能量大,轨道半径小,原子的能量小.
eq \([核心点击])
1.轨道量子化
轨道半径只能够是一些不连续的、某些分立的数值.
氢原子各条可能轨道上的半径rn=n2r1(n=1,2,3…)其中n是正整数,r1是离核最近的可能轨道的半径,r1=0.53×10-10 m.其余可能的轨道半径还有0.212 nm、0.477 nm…不可能出现介于这些轨道半径之间的其他值.这样的轨道形式称为轨道量子化.
2.能量量子化
(1)电子在可能轨道上运动时,尽管是变速运动,但它并不释放能量,原子是稳定的,这样的状态也称之为定态.
(2)由于原子的可能状态(定态)是不连续的,具有的能量也是不连续的.这样的能量值,称为能级,能量最低的状态称为基态,其他的状态叫作激发态,对氢原子,以无穷远处为势能零点时,其能级公式En=eq \f(1,n2)E1(n=1,2,3…)
其中E1代表氢原子的基态的能级,即电子在离核最近的可能轨道上运动时原子的能量值,E1=-13.6 eV.n是正整数,称为量子数.量子数n越大,表示能级越高.
(3)原子的能量包括:原子的原子核与电子所具有的电势能和电子运动的动能.
3.跃迁
原子从一种定态(设能量为E2)跃迁到另一种定态(设能量为E1)时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,高能级Em 低能级En.
可见,电子如果从一个轨道到另一个轨道,不是以螺旋线的形式改变半径大小的,而是从一个轨道上“跳跃”到另一个轨道上.玻尔将这种现象叫作电子的跃迁.
1.(多选)玻尔在他提出的原子模型中所作的假设有( )
A.原子处在具有一定能量的定态中,虽然电子做加速运动,但不向外辐射能量
B.原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,而电子的可能轨道的分布是不连续的
C.电子从一个轨道跃迁到另一个轨道时,辐射(或吸收)一定频率的光子
D.电子跃迁时辐射的光子的频率等于电子绕核做圆周运动的频率
【解析】 A、B、C三项都是玻尔提出来的假设,其核心是原子定态概念的引入与能量跃迁学说的提出,也就是“量子化”的概念.原子的不同能量状态与电子绕核运动时不同的圆轨道相对应,是经典理论与量子化概念的结合.原子辐射的能量与电子在某一可能轨道上绕核的运动无关.
【答案】 ABC
2.已知氢原子的基态能量为E1,激发态能量En=eq \f(E1,n2),其中n=2,3,…用h表示谱朗克常量,c表示真空中的光速.能使氢原子从第一激发态电离的光子的最大波长为( )
【导学号:54472056】
A.-eq \f(4hc,3E1) B.-eq \f(2hc,E1) C.-eq \f(4hc,E1) D.-eq \f(9hc,E1)
【解析】 第一激发态是能量最低的激发态n=2,依题意可知第一激发态能量为E2=eq \f(E1,4);电离是氢原子从第一激发态跃迁到最高能级n(n=∞)的过程,需要吸收的最小光子能量为E=0-E2=-eq \f(E1,4),由E=eq \f(hc,λ)得:-eq \f(E1,4)=eq \f(hc,λ)
所以能使氢原子从第一激发态电离的光子最大波长为λ=-eq \f(4hc,E1),故C选项正确.
【答案】 C
3.一个氢原子中的电子从一个半径为ra的轨道自发地直接跃迁至另一半径为rb的轨道,已知ra>rb,则在此过程中( )
【导学号:54472057】
A.原子发出一系列频率的光子
B.原子要吸收一系列频率的光子
C.原子要吸收某一频率的光子
D.原子要辐射某一频率的光子
【解析】 因为是从高能级向低能级跃迁,所以应放出光子,故B、C错误;“直接”从一能级跃迁到另一能级,只对应某一能级差,故只能放出某一频率的光子,故A错误,D正确.
【答案】 D
解决玻尔原子模型问题的四个关键
(1)电子绕核做圆周运动时,不向外辐射能量.
(2)原子辐射的能量与电子绕核运动无关,只由跃迁前后的两个能级差决定.
(3)处于基态的原子是稳定的,而处于激发态的原子是不稳定的.
(4)原子的能量与电子的轨道半径相对应,轨道半径大,原子的能量大,轨道半径小,原子的能量小.
eq \([先填空])
1.玻尔理论对氢光谱的解释
(1)解释巴耳末公式
①按照玻尔理论,从高能级跃迁到低能级时辐射的光子的能量为hν=Em-En.
②巴耳末公式中的正整数n和2正好代表能级跃迁之前和之后所处的定态轨道的量子数n和2.并且理论上的计算和实验测量的里德伯常量符合得很好.
(2)解释氢原子光谱的不连续性
原子从较高能级向低能级跃迁时放出光子的能量等于前后两个能级差,由于原子的能级是分立的,所以放出的光子的能量也是分立的,因此原子的发射光谱只有一些分立的亮线.
2.玻尔理论的局限性
(1)成功之处
玻尔理论第一次将量子观念引入原子领域,提出了定态和跃迁的概念,成功解释了氢原子光谱的实验规律.
(2)局限性
保留了经典粒子的观念,把电子的运动仍然看做经典力学描述下的轨道运动.
(3)电子云
原子中的电子没有确定的坐标值,我们只能描述电子在某个位置出现概率的多少,把电子这种概率分布用疏密不同的点表示时,这种图象就像云雾一样分布在原子核周围,故称电子云.
eq \([再判断])
1.氢原子能级的量子化是氢光谱不连续的成因.(√)
2.玻尔理论能很好地解释氢光谱为什么是一些分立的亮线.(√)
3.巴耳末公式是玻尔理论的一种特殊情况.(√)
4.玻尔理论能成功地解释氢光谱.(√)
5.电子云就是原子核外电子的分布图.(×)
eq \([后思考])
1.根据巴耳末公式eq \f(1,λ)=Req \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,22)-\f(1,n2)))计算出的氢原子光谱线是玻尔模型中电子怎样跃迁发出的?
【提示】 巴耳末公式代表的是电子从量子数n=3,4,5,…的能级向量子数为2的能级跃迁时发出的光谱线.
2.电子在核外的运动真的有固定轨道吗?玻尔理论中的轨道量子化又如何解释?
【提示】 在原子内部,电子绕核运动并没有固定的轨道,只不过当原子处于不同的定态时,电子出现在rn=n2r1处的概率大.
eq \([合作探讨])
如图1841所示为一氢原子的能级图,一个氢原子处于n=4的能级.
图1841
探讨1:该氢原子向低能级跃迁时,最多能辐射出几种频率的光子?
【提示】 3种.
探讨2:该氢原子的电离能是多大?要使该氢原子电离,入射光子的能量必须满足什么条件?
【提示】 0.85 eV、E≥0.85 eV
eq \([核心点击])
1.能级图中n称为量子数,E1代表氢原子的基态能量,即量子数n=1时对应的能量,其值为-13.6 eV.En代表电子在第n个轨道上运动时的能量.
作能级图时,能级横线间的距离和相应的能级差相对应,能级差越大,间隔越宽,所以量子数越大,能级越密,竖直线的箭头表示原子跃迁方向,长度表示辐射光子能量的大小,n=1是原子的基态,n→∞是原子电离时对应的状态.
2.能级跃迁:处于激发态的原子是不稳定的,它会自发地向较低能级跃迁,经过一次或几次跃迁到达基态.所以一群氢原子处于量子数为n的激发态时,可能辐射出的光谱线条数为N=eq \f(nn-1,2)=Ceq \\al(2,n).
3.光子的发射:原子由高能级向低能级跃迁时以光子的形式放出能量,发射光子的频率由下式决定.
hν=Em-En(Em、En是始末两个能级且m>n)
能级差越大,放出光子的频率就越高.
4.使原子能级跃迁的两种粒子——光子与实物粒子:
(1)原子若是吸收光子的能量而被激发,其光子的能量必须等于两能级的能量差,否则不被吸收,不存在激发到n能级时能量有余,而激发到n+1时能量不足,则可激发到n能级的问题.
(2)原子还可吸收外来实物粒子(例如,自由电子)的能量而被激发,由于实物粒子的动能可部分地被原子吸收,所以只要入射粒子的能量大于两能级的能量差值(E>Em-En),就可使原子发生能级跃迁.
5.原子的电离:若入射光子的能量大于原子的电离能,如处于基态的氢原子电离能为13.6 eV,则原子也会被激发跃迁,这时核外电子脱离原子核的束缚成为自由电子,光子能量大于电离能的部分成为自由电子的动能.
4.(多选)有关氢原子光谱的说法,正确的是( )
【导学号:54472058】
A.氢原子的发射光谱是线状谱
B.氢原子光谱说明氢原子只发出特定频率的光
C.氢原子光谱说明氢原子能级是分立的
D.氢原子光谱线的频率与氢原子能级的能量差无关
【解析】 原子的发射光谱是原子跃迁时形成的,由于原子的能级是分立的,所以氢原子的发射光谱是线状谱,原子发出的光子的能量正好等于原子跃迁时的能级差,故氢原子只能发出特定频率的光,综上所述,选项D错,A、B、C对.
【答案】 ABC
5.(多选)欲使处于基态的氢原子激发或电离,下列措施可行的是( )
A.用10.2 eV的光子照射
B.用11 eV的光子照射
C.用14 eV的光子照射
D.用10 eV的光子照射
【解析】 由氢原子的能级图可求得E2-E1=-3.40 eV-(-13.6) eV=10.2 eV,即10.2 eV是第二能级与基态之间的能量差,处于基态的氢原子吸收10.2 eV的光子后将跃迁到第二能级态,可使处于基态的氢原子激发,A对;Em-E1≠11 eV,即不满足玻尔理论关于跃迁的条件,B错;要使处于基态的氢原子电离,照射光的能量须≥13.6 eV,而14 eV>13.6 eV,故14 eV的光子可使基态的氢原子电离,C对;Em-E1≠10 eV,既不满足玻尔理论关于跃迁的条件,也不能使氢原子电离,D错.
【答案】 AC
6.氢原子基态的能量为E1=-13.6 eV.大量氢原子处于某一激发态.由这些氢原子可能发出的所有的光子中,频率最大的光子能量为-0.96E1,频率最小的光子的能量为________eV(保留2位有效数字),这些光子可具有________种不同的频率.
【解析】 频率最大的光子能量为-0.96E1,即En-(-13.6 eV)=-0.96×(-13.6 eV),解得En=-0.54 eV
即n=5,从n=5能级开始,根据eq \f(nn-1,2)可得共有10种不同频率的光子.
从n=5到n=4跃迁的光子频率最小,根据E=E5-E4可得频率最小的光子的能量为0.31 eV.
【答案】 0.31 10
能级跃迁规律
大量处于n激发态的氢原子向基态跃迁时,最多可辐射eq \f(nn-1,2)种频率的光子.一个处于n激发态的氢原子向基态跃迁时,最多可辐射(n-1)种频率的光子.
学 习 目 标
知 识 脉 络
1.知道玻尔原子理论基本假设的主要内容.(重点)
2.了解能级、能级跃迁、能量量子化以及基态、激发态等概念.(重点)
3.掌握用玻尔原子理论简单解释氢原子模型.(重点、难点)
4.了解玻尔模型的不足之处及其原因.
玻 尔 原 子 理 论 的 基 本 假 设
玻尔理论对氢光谱的解释、玻尔理论的局限性
高中物理人教版 (新课标)选修36 核裂变教学设计: 这是一份高中物理人教版 (新课标)选修36 核裂变教学设计,共8页。
高中人教版 (新课标)6 核裂变教学设计: 这是一份高中人教版 (新课标)6 核裂变教学设计,共8页。
高中物理人教版 (新课标)选修31 电子的发现教学设计: 这是一份高中物理人教版 (新课标)选修31 电子的发现教学设计,共8页。