2021中考数学压轴题题型:专题4二次函数与相似全等问题(含原卷及解析卷)
展开函数中因动点产生的相似三角形问题一般有三个解题途径
① 求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.
判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.
如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两边表示出来,按照对应边成比例,分和两种情况列方程.
应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.
应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).
还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.
求线段的长,要用到两点间的距离公式,而这个公式容易记错.理解记忆比较好.
如图1,如果已知A、B两点的坐标,怎样求A、B两点间的距离呢?
我们以AB为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB的长了.水平距离BC的长就是A、B两点间的水平距离,等于A、B两点的横坐标相减;竖直距离AC就是A、B两点间的竖直距离,等于A、B两点的纵坐标相减.
图1
【例1】(2020•贵州省铜仁市中考第25题)如图,已知抛物线y=ax2+bx+6经过两点A(﹣1,0),B(3,0),C是抛物线与y轴的交点.
(1)求抛物线的解析式;
(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,设△PBC的面积为S,求S关于m的函数表达式(指出自变量m的取值范围)和S的最大值;
(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似,如果存在,请求出点M和点N的坐标.
【例2】(2020•湖南省娄底市模拟第26题)如图,二次函数y=ax2+bx+2的图象与x轴相交于点A(﹣1,0)、B(4,0),与y轴相交于点C.
(1)求该函数的表达式;
(2)点P为该函数在第一象限内的图象上一点,过点P作PQ⊥BC,垂足为点Q,连接PC.
①求线段PQ的最大值;
②若以点P、C、Q为顶点的三角形与△ABC相似,求点P的坐标.
【例3】(2020•湖北省随州市中考第24题)如图,在平面直角坐标系中,抛物线y=ax2+bx+1的对称轴为直线x=32,其图象与x轴交于点A和点B(4,0),与y轴交于点C.
(1)直接写出抛物线的解析式和∠CAO的度数;
(2)动点M,N同时从A点出发,点M以每秒3个单位的速度在线段AB上运动,点N以每秒2个单位的速度在线段AC上运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动的时间为t(t>0)秒,连接MN,再将线段MN绕点M顺时针旋转90°,设点N落在点D的位置,若点D恰好落在抛物线上,求t的值及此时点D的坐标;
(3)在(2)的条件下,设P为抛物线上一动点,Q为y轴上一动点,当以点C,P,Q为顶点的三角形与△MDB相似时,请直接写出点P及其对应的点Q的坐标.(每写出一组正确的结果得1分,至多得4分)
【例4】(2020•湖北省鄂州市中考第24题)如图,抛物线y=12x2+bx+c与x轴交于A、B两点(点A在点B左边),与y轴交于点C.直线y=12x﹣2经过B、C两点.
(1)求抛物线的解析式;
(2)点P是抛物线上的一动点,过点P且垂直于x轴的直线与直线BC及x轴分别交于点D、M.PN⊥BC,垂足为N.设M(m,0).
①点P在抛物线上运动,若P、D、M三点中恰有一点是其它两点所连线段的中点(三点重合除外).请直接写出符合条件的m的值;
②当点P在直线BC下方的抛物线上运动时,是否存在一点P,使△PNC与△AOC相似.若存在,求出点P的坐标;若不存在,请说明理由.
【例5】(2020•内蒙古赤峰市中考第25题)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(1,0),B(4,0)两点,与y轴交于点C,直线y=−12x+2经过B,C两点.
(1)直接写出二次函数的解析式 ;
(2)平移直线BC,当直线BC与抛物线有唯一公共点Q时,求此时点Q的坐标;
(3)过(2)中的点Q作QE∥y轴,交x轴于点E.若点M是抛物线上一个动点,点N是x轴上一个动点,是否存在以E,M,N三点为顶点的直角三角形(其中M为直角顶点)与△BOC相似?如果存在,请直接写出满足条件的点M的个数和其中一个符合条件的点M的坐标;如果不存在,请说明理由.
【例6】(2020•广东省中考第25题)如图,抛物线y=3+36x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=3CD.
(1)求b,c的值;
(2)求直线BD的函数解析式;
(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.
【题组一】
1.(2020•聊城中考)如图,二次函数y=ax2+bx+4的图象与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.
(1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;
(2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;
(3)连接CP,CD,在动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与△DCE相似?如果存在,求出点P的坐标;如果不存在,请说明理由.
2.(2020•成都中考)在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C(0,﹣2).
(1)求抛物线的函数表达式;
(2)如图1,点D为第四象限抛物线上一点,连接AD,BC交于点E,连接BD,记△BDE的面积为S1,△ABE的面积为S2,求S1S2的最大值;
(3)如图2,连接AC,BC,过点O作直线l∥BC,点P,Q分别为直线l和抛物线上的点.试探究:在第一象限是否存在这样的点P,Q,使△PQB∽△CAB.若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
3.(2020•连云港中考)在平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L1:y=12x2−32x﹣2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.
(1)若抛物线L2经过点(2,﹣12),求L2对应的函数表达式;
(2)当BP﹣CP的值最大时,求点P的坐标;
(3)设点Q是抛物线L1上的一个动点,且位于其对称轴的右侧.若△DPQ与△ABC相似,求其“共根抛物线”L2的顶点P的坐标.
4.(2020•陕西中考)如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.
(1)求该抛物线的表达式;
(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.
【题组二】
5.(2020•潍坊中考)如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.
(1)求抛物线的表达式;
(2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=35S△ABC时,求点P的坐标;
(3)点N是对称轴l右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.
6.(2020•烟台中考)如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x=12,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.
(1)求抛物线的表达式;
(2)当线段DF的长度最大时,求D点的坐标;
(3)抛物线上是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.
7.(2020•山西模拟)如图,二次函数y=0.5x2+bx+c的图象过点B(0,1)和C(4,3)两点,与x轴交于点D、点E,过点B和点C的直线与x轴交于点A.
(1)求二次函数的解析式;
(2)在x轴上有一动点P,随着点P的移动,存在点P使△PBC是直角三角形,请你求出点P的坐标;
(3)若动点P从A点出发,在x轴上沿x轴正方向以每秒2个单位的速度运动,同时动点Q也从A点出发,以每秒a个单位的速度沿射线AC运动,是否存在以A、P、Q为顶点的三角形与△ABD相似?若存在,直接写出a的值;若不存在,说明理由.
8.(2019•锦州中考)如图1,在平面直角坐标系中,一次函数y=−34x+3的图象与x轴交于点A,与y轴交于B点,抛物线y=﹣x2+bx+c经过A,B两点,在第一象限的抛物线上取一点D,过点D作DC⊥x轴于点C,交直线AB于点E.
(1)求抛物线的函数表达式;
(2)是否存在点D,使得△BDE和△ACE相似?若存在,请求出点D的坐标,若不存在,请说明理由;
(3)如图2,F是第一象限内抛物线上的动点(不与点D重合),点G是线段AB上的动点.连接DF,FG,当四边形DEGF是平行四边形且周长最大时,请直接写出点G的坐标.
【题组三】
9.(2019•莱芜区中考)如图,抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点.
(1)求抛物线的函数表达式;
(2)如图1,P为抛物线上在第二象限内的一点,若△PAC面积为3,求点P的坐标;
(3)如图2,D为抛物线的顶点,在线段AD上是否存在点M,使得以M,A,O为顶点的三角形与△ABC相似?若存在,求点M的坐标;若不存在,请说明理由.
10.(2020•柘城县模拟)如图,抛物线y=ax2+bx+c经过A(﹣1,0),B两点,且与y轴交于点C(0,3),抛物线的对称轴是直线x=1.
(1)求抛物线的函数表达式;
(2)抛物线与直线y=﹣x﹣1交于A、E两点,P点在x轴上且位于点B的左侧,若以P、B、C为顶点的三角形与△ABE相似,求点P的坐标;
(3)F是直线BC上一动点,M为抛物线上一动点,若△MBF为等腰直角三角形,请直接写出点M的坐标.
11.(2020•灌云县一模)如图,以D为顶点的抛物线y=−12x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+6.
(1)求抛物线的表达式;
(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;
(3)在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
12.(2020•宛城区一模)如图,抛物线y=ax2+bx+3与x轴交于A(﹣3,0)、B(1,0)两点,与y轴交于点C,点D是抛物线的顶点.
(1)求抛物线的解析式;
(2)点M是y轴正半轴上的一点,OM=2,点Q在对称轴左侧的抛物线上运动,直线OQ交抛物线的对称轴于点N,连接MN,当MN平分∠OND时,求点Q的坐标;
(3)直线AC交对称轴于点E,P是坐标平面内一点,当△PCE与△BCD全等时,请直接写出点P的坐标.
【题组四】
13.(2020•碑林区校级四模)如图,抛物线M:y=﹣x2﹣3x+4与x轴的交点分别为A、B,与y轴交点为C.
(1)求A、B、C三点的坐标.
(2)将抛物线M向右平移m(m>32)个单位得到抛物线M',设抛物线M'的顶点为D,它的对称轴与x轴交点为E,要使△ODE与△OAC相似,求m的值.
14.(2020•市中区模拟)如图,将抛物线W1:y=﹣x2+3平移后得到W2,抛物线W2经过抛物线W1的顶点C,且与x轴相交于A、B两点,其中B(1,0),抛物线W2顶点是D.
(1)求抛物线W2的关系式;
(2)设点E在抛物线W2上,连接AC、DC,如果CE平分∠DCA,求点E的坐标;
(3)在(2)的条件下,将抛物线W1沿x轴方向平移,点C的对应点为F,当△DEF与△ABC相似时,请求出平移后抛物线的表达式.
15.(2020•常州一模)如图1,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P是抛物线上一动点,过点P作x轴的垂线PQ,过点A作AQ⊥PQ于点Q,连接AP(AP不平行x轴).
(1)求抛物线的解析式;
(2)点P在抛物线上运动,若△AQP∽△AOC(点P与点C对应),求点P的坐标;
(3)如图2,若点P位于抛物线的对称轴的右侧,将△APQ沿AP对折,点Q的对应点为点Q',当点Q'落在x轴上时,求点P的坐标.
16.(2020•潍坊一模)如图,在平面直角坐标系xOy中,将抛物线y=﹣x2+bx+c与直线y=﹣x+1相交于点A(0,1)和点B(3,﹣2),交x轴于点C,顶点为点F,点D是该抛物线上一点.
(1)求抛物线的函数表达式;
(2)如图1,若点D在直线AB上方的抛物线上,求△DAB的面积最大时点D的坐标;
(3)如图2,若点D在对称轴左侧的抛物线上,且点E(1,t)是射线CF上一点,当以C、B、D为顶点的三角形与△CAE相似时,求所有满足条件的t的值.
【题组五】
17.(2020•镇平县模拟)如图,在平面直角坐标系中抛物线y=ax2+bx+c经过原点,且与直线y=﹣kx+6交于则A(6,3)、B(﹣4,8)两点.
(1)求直线和抛物线的解析式;
(2)点P在抛物线上,解决下列问题:
①在直线AB下方的抛物线上求点P,使得△PAB的面积等于20;
②连接OA,OB,OP,作PC⊥x轴于点C,若△POC和△ABO相似,请直接写出点P的坐标.
18.(2020•成都模拟)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c的图象与x轴交于A(﹣3,0)、B(2,0)两点,与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)点E(m,2)是直线AC上方的抛物线上一点,连接EA、EB、EC,EB与y轴交于D.
①点F是x轴上一动点,连接EF,当以A、E、F为顶点的三角形与△BOD相似时,求出线段EF的长;
②点G为y轴左侧抛物线上一点,过点G作直线CE的垂线,垂足为H,若∠GCH=∠EBA,请直接写出点H的坐标.
19.(2020•英德市一模)如图,抛物线y=ax2+bx﹣2经过点A(4,0)、B(1,0)两点,点C为抛物线与y轴的交点.
(1)求此抛物线的解析式;
(2)P是x轴上方抛物线上的一个动点,过P作PM⊥x轴,垂足为M,问:是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线上找一点D,过点D作x轴的垂线,交AC于点E,是否存在这样的点D,使DE最长,若存在,求出点D的坐标,以及此时DE的长,若不存在,请说明理由.
20.(2020•老城区校级二模)如图,抛物线y=ax2+bx+4交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC.
(1)求抛物线的解析式;
(2)点P是第一象限抛物线上一点,设P点的横坐标为m.过点P作PD⊥x轴,交BC于点D,过点D作DE⊥y轴,垂足为E,连接PE,当△PDE和△BOC相似时,求点P的坐标;
(3)连接AC,Q是线段BC上一动点,过Q作QF⊥AC于F,QG⊥AB于G,连接FG.请直接写出FG的最小值和此时点Q的坐标.
【题组六】
21.(2020•碑林区校级模拟)如图,直线y=−43x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=−83x2+bx+c经过点A,B.
(1)求点B的坐标和抛物线的解析式;
(2)M(m,0)为线段OA上的动点,过点M作垂直于x轴的直线与直线AB及抛物线分别交于点P,N;若以B,P,N为顶点的三角形与△APM相似,求点M的坐标.
22.(2020•雁塔区校级模拟)已知抛物线y=﹣x2+bx+c的图象与x轴的一个交点为A(﹣3,0),另一个交点为B,且与y轴交于点C(0,3).
(1)求抛物线的表达式;
(2)设抛物线的顶点为D,连接AD,AC,CD,BC,将抛物线沿着y轴平移,点C的对应点为点M,是否存在点M使得以M,B,C为顶点的三角形与△ACD相似?若存在,求出平移后的抛物线表达式;若不存在,请说明理由.
23.(2020•广东二模)如图,在平面直角坐标系中,抛物线与x轴交于点A(1,0),B(﹣7,0),顶点D坐标为(﹣3,−23),点C在y轴的正半轴上,CD交x轴于点F,△CAD绕点C顺时针旋转得到△CFE,点A恰好旋转到点F,连接BE.过顶点D作DD1⊥x轴于点D1.
(1)求抛物线的表达式;
(2)求证:四边形BFCE是平行四边形.
(3)点P是抛物线上一动点,当P在B点左侧时,过点P作PM⊥x轴,点M为垂足,请问是否存在P点使得△PAM与△DD1A相似,如果存在,请写出点P的横坐标.
24.(2020•沙坪坝区自主招生)如图1,二次函数y=−18x2+14x+3的图象交x轴于A、B两点(点A在点B的左侧),交y轴于C点,连结AC,过点C作CD⊥AC交AB于点D.
(1)求点D的坐标;
(2)如图2,已知点E是该二次函数图象的顶点,在线段AO上取一点F,过点F作FH⊥CD,交该二次函数的图象于点H(点H在点E的右侧),当五边形FCEHB的面积最大时,求点H的横坐标;
(3)如图3,在直线BC上取一点M(不与点B重合),在直线CD的右上方是否存在这样的点N,使得以C、M、N为顶点的三角形与△BCD全等?若存在,请求出点N的坐标;若不存在,请说明理由.
【题组七】
25.(2020•普陀区二模)在平面直角坐标系xOy中(如图),已知点A在x轴的正半轴上,且与原点的距离为3,抛物线y=ax2﹣4ax+3(a≠0)经过点A,其顶点为C,直线y=1与y轴交于点B,与抛物线交于点D(在其对称轴右侧),联结BC、CD.
(1)求抛物线的表达式及点C的坐标;
(2)点P是y轴的负半轴上的一点,如果△PBC与△BCD相似,且相似比不为1,求点P的坐标;
(3)将∠CBD绕着点B逆时针方向旋转,使射线BC经过点A,另一边与抛物线交于点E(点E在对称轴的右侧),求点E的坐标.
26.(2020•杨浦区二模)如图,已知在平面直角坐标系xOy中,抛物线y=ax2+bx+4经过点A(﹣3,0)和点B(3,2),与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)点P是抛物线在第一象限内一点,联结AP,如果点C关于直线AP的对称点D恰好落在x轴上,求直线AP的截距;
(3)在(2)小题的条件下,如果点E是y轴正半轴上一点,点F是直线AP上一点.当△EAO与△EAF全等时,求点E的纵坐标.
27.(2020•余干县模拟)如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,−83),与x轴交于A、B两点.
(1)求抛物线的解析式.
(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和AEAB的值.
28.(2019秋•河东区模拟)如图,抛物线y=x2+2x﹣3与x轴交于A、B两点,与y轴交于点C.
(1)求点A、B、C的坐标;
(2)若点D在x轴的上方,以A、B、D为顶点的三角形与△ABC全等,平移这条抛物线,使平移后的抛物线经过点B与点D,请你写出平移过程,并说明理由.
2021中考数学压轴题题型:专题16二次函数与几何变换综合问题(含原卷及解析卷): 这是一份2021中考数学压轴题题型:专题16二次函数与几何变换综合问题(含原卷及解析卷),文件包含二次函数与几何变换综合问题原卷版docx、二次函数与几何变换综合问题解析版docx等2份学案配套教学资源,其中学案共96页, 欢迎下载使用。
2021中考数学压轴题题型:专题14圆与相似三角函数综合问题(含原卷及解析卷): 这是一份2021中考数学压轴题题型:专题14圆与相似三角函数综合问题(含原卷及解析卷),文件包含圆与相似三角函数综合问题原卷版docx、圆与相似三角函数综合问题解析版docx等2份学案配套教学资源,其中学案共104页, 欢迎下载使用。
2021中考数学压轴题题型:专题13二次函数与交点公共点综合问题(含原卷及解析卷): 这是一份2021中考数学压轴题题型:专题13二次函数与交点公共点综合问题(含原卷及解析卷),文件包含二次函数与交点公共点综合问题原卷版docx、二次函数与交点公共点综合问题解析版docx等2份学案配套教学资源,其中学案共75页, 欢迎下载使用。