2021中考数学压轴题题型:专题2二次函数与直角三角形问题(含原卷及解析卷)
展开2021新版挑战中考数学压轴题之学霸秘笈大揭秘
专题2二次函数与直角三角形问题
解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.
一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.
有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.
解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.
如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.
我们先看三个问题:
1.已知线段AB,以线段AB为直角边的直角三角形ABC有多少个?顶点C的轨迹是什么?
2.已知线段AB,以线段AB为斜边的直角三角形ABC有多少个?顶点C的轨迹是什么?
3.已知点A(4,0),如果△OAB是等腰直角三角形,求符合条件的点B的坐标.
图1 图2 图3
如图1,点C在垂线上,垂足除外.如图2,点C在以AB为直径的圆上,A、B两点除外.如图3,以OA为边画两个正方形,除了O、A两点以外的顶点和正方形对角线的交点,都是符合题意的点B,共6个.
如图4,已知A(3, 0),B(1,-4),如果直角三角形ABC的顶点C在y轴上,求点C的坐标.
我们可以用几何的方法,作AB为直径的圆,快速找到两个符合条件的点C.
如果作BD⊥y轴于D,那么△AOC∽△CDB.[来源:学科网]
[来源:Zxxk.Com]
设OC=m,那么.
这个方程有两个解,分别对应图中圆与y轴的两个交点.
【例1】(2020•四川省广元市中考第24题)如图,直线y=﹣2x+10分别与x轴,y轴交于A,B两点,点C为OB的中点,抛物线y=x2+bx+c经过A,C两点.
(1)求抛物线的函数表达式;
(2)点D是直线AB下方的抛物线上的一点,且△ABD的面积为,求点D的坐标;
(3)点P为抛物线上一点,若△APB是以AB为直角边的直角三角形,求点P到抛物线的对称轴的距离.
【例2】(2020•内蒙古通辽市中考第26题)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C.且直线y=x﹣6过点B,与y轴交于点D,点C与点D关于x轴对称,点P是线段OB上一动点,过点P作x轴的垂线交抛物线于点M,交直线BD于点N.
(1)求抛物线的函数解析式;
(2)当△MDB的面积最大时,求点P的坐标;
(3)在(2)的条件下,在y轴上是否存在点Q,使得以Q,M,N三点为顶点的三角形是直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由.
【例3】(2020•江苏省徐州市中考第28题)如图,在平面直角坐标系中,函数y=﹣ax2+2ax+3a(a>0)的图象交x轴于点A、B,交y轴于点C,它的对称轴交x轴于点E.过点C作CD∥x轴交抛物线于点D,连接DE并延长交y轴于点F,交抛物线于点G.直线AF交CD于点H,交抛物线于点K,连接HE、GK.
(1)点E的坐标为: ;
(2)当△HEF是直角三角形时,求a的值;
(3)HE与GK有怎样的位置关系?请说明理由.
【例4】(2020•浙江省衢州市中考第23题)如图1,在平面直角坐标系中,△ABC的顶点A,C分别是直线yx+4与坐标轴的交点,点B的坐标为(﹣2,0),点D是边AC上的一点,DE⊥BC于点E,点F在边AB上,且D,F两点关于y轴上的某点成中心对称,连结DF,EF.设点D的横坐标为m,EF2为l,请探究:
①线段EF长度是否有最小值.
②△BEF能否成为直角三角形.
小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题.
(1)小明利用“几何画板”软件进行观察,测量,得到l随m变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l与m可能满足的函数类别.
(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l关于m的函数表达式及自变量的取值范围,并求出线段EF长度的最小值.
(3)小明通过观察,推理,发现△BEF能成为直角三角形,请你求出当△BEF为直角三角形时m的值.
【题组一】
1.(2020•河南模拟)如图,抛物线y=﹣x2+bx+c的图象与x轴交于A(﹣4,0)和点B两点,与y轴交于点C,抛物线的对称轴是x=﹣1与x轴交于点D.
(1)求拋物线的函数表达式;
(2)若点P(m,n)为抛物线上一点,且﹣4<m<﹣1,过点P作PE∥x轴,交抛物线的对称轴x=﹣1于点E,作PF⊥x轴于点F,得到矩形PEDF,求矩形PEDF周长的最大值;
(3)点Q为抛物线对称轴x=﹣1上一点,是否存在点Q,使以点Q,B,C为顶点的三角形是直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
2.(2020•梅列区一模)如图,二次函数y=a(x2+2mx﹣3m2)(其中a,m是常数a<0,m>0)的图象与x轴分别交于A、B(点A位于点B的右侧),与y轴交于点C(0,3),点D在二次函数的图象上,CD∥AB,连结AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.
(1)求a与m的关系式;
(2)求证:为定值;
(3)设该二次函数的图象的顶点为F.探索:在x轴的正半轴上是否存在点G,连结GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.
3.(2020•张家港市模拟)如图,二次函数y=x2+bx+c的图象与x轴交于A,B两点,B点坐标为(4,0),与y轴交于点C(0,4)点D为抛物线上一点.
(1)求抛物线的解析式及A点坐标;
(2)若△BCD是以BC为直角边的直角三角形时,求点D的坐标;
(3)若△BCD是锐角三角形,请写出点D的横坐标m的取值范围.
4.(2020•安阳县模拟)如图1,在平面直角坐标系中,直线yx+1分别与x轴,y轴交于点A,B(0,1),抛物线yx2+bx+c经过点B,且与直线y═x+1的另一个交点为C(﹣4,n).
(1)求抛物线的解析式;
(2)如图2,点D是抛物线上一动点,且点D的横坐标为t(﹣4<t<0),过点D作y轴的平行线,交x轴于点G,交BC于点E,作DF⊥BC于点F,若Rt△DEF的周长为p,求p与t的函数关系式以及p的最大值;
(3)抛物线的对称轴上是否存在一点P.使得△BCP是以BC为直角边的直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
【题组二】
5.(2020•高青县二模)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.
(1)求抛物线y=ax2+2x+c的解析式;
(2)点D为抛物线上对称轴右侧、x轴上方一点,DE⊥x轴于点E,DF∥AC交抛物线对称轴于点F,求DE+DF的最大值;
(3)①在拋物线上是否存在点P,使以点A,P,C为顶点的三角形,是以AC为直角边的直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
②点Q在抛物线对称轴上,其纵坐标为t,请直接写出△ACQ为锐角三角形时t的取值范围.
6.(2020•博罗县一模)如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.
(1)求抛物线的解析式;
(2)求点P在运动的过程中线段PD长度的最大值;
(3)△APD能否构成直角三角形?若能,请直接写出所有符合条件的点P坐标;若不能,请说明理由.
7.(2020•陕西模拟)已知抛物线l1:y=ax2+bx+c的顶点为M(1,﹣4).它与x轴交于点A、点B两点,其中点B的坐标为(3,0).
(1)求抛物线的表达式;
(2)将抛物线l绕x轴上的一个动点旋转180°得新抛物线l′,点B和点M的对应点分别为点C和点N,当△BMN为直角三角形时,求新抛物线l′的表达式.
8.(2020•碑林区校级一模)在平面直角坐标系中,抛物线L1:y=ax2﹣2x的对称轴为直线x=﹣2,顶点为A.将抛物线L1沿y轴对称,得到抛物线L2,顶点为B.
(1)求a的值.
(2)求抛物线L2的表达式.
(3)请问在抛物线L1或L2上是否存在点P,使以点P、A、B为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.
【题组三】
9.(2020•鞍山一模)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,与y轴交于点C(0,3),点A的坐标是(3,0),抛物线的对称轴是直线x=1.
(1)求抛物线的函数表达式;
(2)若点P为第四象限内抛物线上一点,且△PBC是直角三角形,求点P的坐标;
(3)在(2)的条件下,在直线BC上是否存在点Q,使∠PQB=∠CPB,若存在,求出点Q坐标:若不存在,请说明理由.
10.(2020•白银模拟)如图,抛物线y=ax2+bx+c与坐标轴交于点A(0,﹣3)、B(﹣1,0)、E(3,0),点P为抛物线上动点,设点P的横坐标为t.
(1)若点C与点A关于抛物线的对称轴对称,求C点的坐标及抛物线的解析式;
(2)若点P在第四象限,连接PA、PE及AE,当t为何值时,△PAE的面积最大?最大面积是多少?
(3)是否存在点P,使△PAE为以AE为直角边的直角三角形,若存在,直接写出点P的坐标;若不存在,请说明理由.
11.(2019•淄博中考)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.
(1)求这条抛物线对应的函数表达式;
(2)问在y轴上是否存在一点P,使得△PAM为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.
(3)若在第一象限的抛物线下方有一动点D,满足DA=OA,过D作DG⊥x轴于点G,设△ADG的内心为I,试求CI的最小值.
12.(2019•怀化中考)如图,在直角坐标系中有Rt△AOB,O为坐标原点,OB=1,tan∠ABO=3,将此三角形绕原点O顺时针旋转90°,得到Rt△COD,二次函数y=﹣x2+bx+c的图象刚好经过A,B,C三点.
(1)求二次函数的解析式及顶点P的坐标;
(2)过定点Q的直线l:y=kx﹣k+3与二次函数图象相交于M,N两点.
①若S△PMN=2,求k的值;
②证明:无论k为何值,△PMN恒为直角三角形;
③当直线l绕着定点Q旋转时,△PMN外接圆圆心在一条抛物线上运动,直接写出该抛物线的表达式.
【题组四】
13.(2020•西湖区模拟)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过点A(1,0),C(0,3)两点,与x轴交于点B.
(1)若直线y=mx+n经过B,C两点,求直线BC和抛物线的表达式;
(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.
14.(2020•唐河县一模)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的解析式;
(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;
(3)连接AC,直接写出△PAC为直角三角形时点P的坐标.
15.(2020春•沙坪坝区校级月考)如图,已知二次函数y=x2+bx+c经过A,B两点,BC⊥x轴于点C,且点A(﹣1,0),C(4,0),AC=BC.
(1)求抛物线的解析式;
(2)点E是线段AB上一动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段EF的长度最大时,求点E的坐标及S△ABF;
(3)点P是抛物线对称轴上的一个动点,是否存在这样的P点,使△ABP成为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.
16.(2020•碑林区校级四模)如图1.在平面直角坐标系xOy中,抛物线y=x2+k的顶点A在直线l:y=x﹣3上,将抛物线沿直线l向右上方平移,使其顶点P始终保持在直线l上,设平移后的抛物线与原抛物线交于B点.
(1)请直接写出k的值;
(2)若抛物线y=x2+k与直线l:y=x﹣3的另一个交点为C.当点B与点C重合时.求平移后抛物线的解析式;
(3)连接AB,BP,当△ABP为直角三角形时,求出P点的坐标.
【题组五】
17.(2020•铁岭四模)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线yx2+bx+c经过点A、C,与AB交于点D.
(1)求抛物线的函数解析式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式;
②当S最大时,在抛物线yx2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.
18.(2018•安顺中考)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线与x轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3).
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.
19.(2018•兰州中考)如图,抛物线y=ax2+bx﹣4经过A(﹣3,0),B(5,﹣4)两点,与y轴交于点C,连接AB,AC,BC.
(1)求抛物线的表达式;
(2)求证:AB平分∠CAO;
(3)抛物线的对称轴上是否存在点M,使得△ABM是以AB为直角边的直角三角形,若存在,求出点M的坐标;若不存在,请说明理由.
20.(2018•阿坝州中考)如图,已知二次函数y=ax2+bx+3的图象与x轴分别交于A(1,0),B(3,0)两点,与y轴交于点C
(1)求此二次函数解析式;
(2)点D为抛物线的顶点,试判断△BCD的形状,并说明理由;
(3)将直线BC向上平移t(t>0)个单位,平移后的直线与抛物线交于M,N两点(点M在y轴的右侧),当△AMN为直角三角形时,求t的值.
2021中考数学压轴题题型:专题16二次函数与几何变换综合问题(含原卷及解析卷): 这是一份2021中考数学压轴题题型:专题16二次函数与几何变换综合问题(含原卷及解析卷),文件包含二次函数与几何变换综合问题原卷版docx、二次函数与几何变换综合问题解析版docx等2份学案配套教学资源,其中学案共96页, 欢迎下载使用。
2021中考数学压轴题题型:专题12二次函数与动点综合问题(含原卷及解析卷): 这是一份2021中考数学压轴题题型:专题12二次函数与动点综合问题(含原卷及解析卷),文件包含二次函数与动点综合问题原卷版docx、二次函数与动点综合问题解析版docx等2份学案配套教学资源,其中学案共87页, 欢迎下载使用。
2021中考数学压轴题题型:专题11二次函数与角综合问题(含原卷及解析卷): 这是一份2021中考数学压轴题题型:专题11二次函数与角综合问题(含原卷及解析卷),文件包含二次函数与角综合问题原卷版docx、二次函数与角综合问题解析版docx等2份学案配套教学资源,其中学案共134页, 欢迎下载使用。