|学案下载
搜索
    上传资料 赚现金
    高考数学知识点总结_41页 学案
    立即下载
    加入资料篮
    高考数学知识点总结_41页 学案01
    高考数学知识点总结_41页 学案02
    高考数学知识点总结_41页 学案03
    还剩38页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学知识点总结_41页 学案

    展开
    这是一份高考数学知识点总结_41页 学案,共41页。

    [全国通用]高中数学高考知识点总结
    1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
    中元素各表示什么?

    注重借助于数轴和文氏图解集合问题。
    空集是一切集合的子集,是一切非空集合的真子集。



    3. 注意下列性质:


    (3)德摩根定律:

    4. 你会用补集思想解决问题吗?(排除法、间接法)

    的取值范围。





    6. 命题的四种形式及其相互关系是什么?
    (互为逆否关系的命题是等价命题。)
    原命题与逆否命题同真、同假;逆命题与否命题同真同假。
    7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?
    (一对一,多对一,允许B中有元素无原象。)
    8. 函数的三要素是什么?如何比较两个函数是否相同?
    (定义域、对应法则、值域)
    9. 求函数的定义域有哪些常见类型?


    10. 如何求复合函数的定义域?
    义域是_。

    11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?





    12. 反函数存在的条件是什么?
    (一一对应函数)
    求反函数的步骤掌握了吗?
    (①反解x;②互换x、y;③注明定义域)


    13. 反函数的性质有哪些?
    ①互为反函数的图象关于直线y=x对称;
    ②保存了原来函数的单调性、奇函数性;


    14. 如何用定义证明函数的单调性?
    (取值、作差、判正负)
    如何判断复合函数的单调性?








    ∴……)
    15. 如何利用导数判断函数的单调性?



    值是( )
    A. 0 B. 1 C. 2 D. 3



    ∴a的最大值为3)
    16. 函数f(x)具有奇偶性的必要(非充分)条件是什么?
    (f(x)定义域关于原点对称)


    注意如下结论:
    (1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。









    17. 你熟悉周期函数的定义吗?

    函数,T是一个周期。)





    如:

    18. 你掌握常用的图象变换了吗?








    注意如下“翻折”变换:




    19. 你熟练掌握常用函数的图象和性质了吗?


    的双曲线。




    应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程


    ②求闭区间[m,n]上的最值。
    ③求区间定(动),对称轴动(定)的最值问题。
    ④一元二次方程根的分布问题。





    由图象记性质! (注意底数的限定!)


    利用它的单调性求最值与利用均值不等式求最值的区别是什么?

    20. 你在基本运算上常出现错误吗?






    21. 如何解抽象函数问题?
    (赋值法、结构变换法)







    22. 掌握求函数值域的常用方法了吗?
    (二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。)
    如求下列函数的最值:





    23. 你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?


    24. 熟记三角函数的定义,单位圆中三角函数线的定义








    25. 你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?















    (x,y)作图象。





    27. 在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。


    28. 在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?


    29. 熟练掌握三角函数图象变换了吗?
    (平移变换、伸缩变换)
    平移公式:


    图象?



    30. 熟练掌握同角三角函数关系和诱导公式了吗?


    “奇”、“偶”指k取奇、偶数。


    A. 正值或负值 B. 负值 C. 非负值 D. 正值

    31. 熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?
    理解公式之间的联系:





    应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。)
    具体方法:

    (2)名的变换:化弦或化切
    (3)次数的变换:升、降幂公式
    (4)形的变换:统一函数形式,注意运用代数运算。




    32. 正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?

    (应用:已知两边一夹角求第三边;已知三边求角。)















    33. 用反三角函数表示角时要注意角的范围。



    34. 不等式的性质有哪些?









    答案:C
    35. 利用均值不等式:

    值?(一正、二定、三相等)
    注意如下结论:











    36. 不等式证明的基本方法都掌握了吗?
    (比较法、分析法、综合法、数学归纳法等)
    并注意简单放缩法的应用。




    (移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。)
    38. 用“穿轴法”解高次不等式——“奇穿,偶切”,从最大根的右上方开始


    39. 解含有参数的不等式要注意对字母参数的讨论

    40. 对含有两个绝对值的不等式如何去解?
    (找零点,分段讨论,去掉绝对值符号,最后取各段的并集。)





    证明:



    (按不等号方向放缩)
    42. 不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题)







    43. 等差数列的定义与性质









    0的二次函数)
    项,即:







    44. 等比数列的定义与性质








    46. 你熟悉求数列通项公式的常用方法吗?
    例如:(1)求差(商)法

    解:




    [练习]




    (2)叠乘法

    解:

    (3)等差型递推公式




    [练习]


    (4)等比型递推公式







    [练习]


    (5)倒数法






    47. 你熟悉求数列前n项和的常用方法吗?
    例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

    解:


    [练习]


    (2)错位相减法:







    (3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。


    [练习]




    48. 你知道储蓄、贷款问题吗?
    △零存整取储蓄(单利)本利和计算模型:
    若每期存入本金p元,每期利率为r,n期后,本利和为:

    △若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息的借款种类)
    若贷款(向银行借款)p元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,第n次还清。如果每期利率为r(按复利),那么每期应还x元,满足



    p——贷款数,r——利率,n——还款期数
    49. 解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。




    (2)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一


    (3)组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不




    50. 解排列与组合问题的规律是:
    相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。
    如:学号为1,2,3,4的四名学生的考试成绩

    则这四位同学考试成绩的所有可能情况是( )
    A. 24 B. 15 C. 12 D. 10
    解析:可分成两类:



    (2)中间两个分数相等

    相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,∴有10种。
    ∴共有5+10=15(种)情况
    51. 二项式定理



    性质:



    (3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数最大且为第


    表示)









    52. 你对随机事件之间的关系熟悉吗?



    的和(并)。



    (5)互斥事件(互不相容事件):“A与B不能同时发生”叫做A、B互斥。


    (6)对立事件(互逆事件):


    (7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。

    53. 对某一事件概率的求法:
    分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即




    (5)如果在一次试验中A发生的概率是p,那么在n次独立重复试验中A恰好发生

    如:设10件产品中有4件次品,6件正品,求下列事件的概率。
    (1)从中任取2件都是次品;

    (2)从中任取5件恰有2件次品;

    (3)从中有放回地任取3件至少有2件次品;
    解析:有放回地抽取3次(每次抽1件),∴n=103
    而至少有2件次品为“恰有2次品”和“三件都是次品”


    (4)从中依次取5件恰有2件次品。
    解析:∵一件一件抽取(有顺序)


    分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题。
    54. 抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。
    55. 对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。
    要熟悉样本频率直方图的作法:

    (2)决定组距和组数;
    (3)决定分点;
    (4)列频率分布表;
    (5)画频率直方图。



    如:从10名女生与5名男生中选6名学生参加比赛,如果按性别分层随机抽样,则组成此参赛队的概率为____________。

    56. 你对向量的有关概念清楚吗?
    (1)向量——既有大小又有方向的量。





    在此规定下向量可以在平面(或空间)平行移动而不改变。
    (6)并线向量(平行向量)——方向相同或相反的向量。
    规定零向量与任意向量平行。

    (7)向量的加、减法如图:



    (8)平面向量基本定理(向量的分解定理)


    的一组基底。
    (9)向量的坐标表示



    表示。






    57. 平面向量的数量积



    数量积的几何意义:

    (2)数量积的运算法则











    [练习]


    答案:

    答案:2

    答案:
    58. 线段的定比分点






    ※. 你能分清三角形的重心、垂心、外心、内心及其性质吗?
    59. 立体几何中平行、垂直关系证明的思路清楚吗?
    平行垂直的证明主要利用线面关系的转化:

    线面平行的判定:


    线面平行的性质:

    三垂线定理(及逆定理):



    线面垂直:


    面面垂直:






    60. 三类角的定义及求法
    (1)异面直线所成的角θ,0°<θ≤90°

    (2)直线与平面所成的角θ,0°≤θ≤90°





    (三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求。)
    三类角的求法:
    ①找出或作出有关的角。
    ②证明其符合定义,并指出所求作的角。
    ③计算大小(解直角三角形,或用余弦定理)。
    [练习]
    (1)如图,OA为α的斜线OB为其在α内射影,OC为α内过O点任一直线。



    (2)如图,正四棱柱ABCD—A1B1C1D1中对角线BD1=8,BD1与侧面B1BCC1所成的为30°。
    ①求BD1和底面ABCD所成的角;
    ②求异面直线BD1和AD所成的角;
    ③求二面角C1—BD1—B1的大小。


    (3)如图ABCD为菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB与面PCD所成的锐二面角的大小。

    (∵AB∥DC,P为面PAB与面PCD的公共点,作PF∥AB,则PF为面PCD与面PAB的交线……)
    61. 空间有几种距离?如何求距离?
    点与点,点与线,点与面,线与线,线与面,面与面间距离。
    将空间距离转化为两点的距离,构造三角形,解三角形求线段的长(如:三垂线定理法,或者用等积转化法)。
    如:正方形ABCD—A1B1C1D1中,棱长为a,则:
    (1)点C到面AB1C1的距离为___________;
    (2)点B到面ACB1的距离为____________;
    (3)直线A1D1到面AB1C1的距离为____________;
    (4)面AB1C与面A1DC1的距离为____________;
    (5)点B到直线A1C1的距离为_____________。

    62. 你是否准确理解正棱柱、正棱锥的定义并掌握它们的性质?
    正棱柱——底面为正多边形的直棱柱
    正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。

    正棱锥的计算集中在四个直角三角形中:

    它们各包含哪些元素?


    63. 球有哪些性质?

    (2)球面上两点的距离是经过这两点的大圆的劣弧长。为此,要找球心角!
    (3)如图,θ为纬度角,它是线面成角;α为经度角,它是面面成角。


    (5)球内接长方体的对角线是球的直径。正四面体的外接球半径R与内切球半径r之比为R:r=3:1。
    积为( )

    答案:A
    64. 熟记下列公式了吗?


    (2)直线方程:







    65. 如何判断两直线平行、垂直?




    66. 怎样判断直线l与圆C的位置关系?
    圆心到直线的距离与圆的半径比较。
    直线与圆相交时,注意利用圆的“垂径定理”。
    67. 怎样判断直线与圆锥曲线的位置?

    68. 分清圆锥曲线的定义











    70. 在圆锥曲线与直线联立求解时,消元后得到的方程,要注意其二次项系数是否为零?△≥0的限制。(求交点,弦长,中点,斜率,对称存在性问题都在△≥0下进行。)


    71. 会用定义求圆锥曲线的焦半径吗?
    如:






    通径是抛物线的所有焦点弦中最短者;以焦点弦为直径的圆与准线相切。
    72. 有关中点弦问题可考虑用“代点法”。


    答案:
    73. 如何求解“对称”问题?
    (1)证明曲线C:F(x,y)=0关于点M(a,b)成中心对称,设A(x,y)为曲线C上任意一点,设A'(x',y')为A关于点M的对称点。






    75. 求轨迹方程的常用方法有哪些?注意讨论范围。
    (直接法、定义法、转移法、参数法)
    76. 对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。



    相关学案

    高考数学知识点完美总结: 这是一份高考数学知识点完美总结,共445页。

    高中数学人教版新课标A必修1第一章 集合与函数概念综合与测试学案及答案: 这是一份高中数学人教版新课标A必修1第一章 集合与函数概念综合与测试学案及答案,共10页。学案主要包含了学习目标,知识网络,要点梳理,典型例题,思路点拨,总结升华等内容,欢迎下载使用。

    高中数学人教版新课标A必修11.3.1单调性与最大(小)值学案: 这是一份高中数学人教版新课标A必修11.3.1单调性与最大(小)值学案,共18页。学案主要包含了函数的单调区间等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map