- 中考总复习:全等三角形--知识讲解 试卷 7 次下载
- 中考总复习:特殊三角形--巩固练习(基础) 试卷 1 次下载
- 中考总复习:特殊三角形--知识讲解(提高) 试卷 5 次下载
- 中考总复习:特殊三角形--巩固练习(提高) 试卷 3 次下载
- 中考总复习:勾股定理及其逆定理-- 巩固练习(基础) 试卷 1 次下载
中考总复习:特殊三角形--知识讲解(基础)
展开【考纲要求】
【高清课堂:等腰三角形与直角三角形 考纲要求】
1.了解等腰三角形、等边三角形、直角三角形的概念,会识别这三种图形;理解等腰三角形、等边三角形、直角三角形的性质和判定;
2.能用等腰三角形、等边三角形、直角三角形的性质和判定解决简单问题;
3.会运用等腰三角形、等边三角形、直角三角形的知识解决有关问题.
【知识网络】
【考点梳理】
考点一、等腰三角形
1.等腰三角形:有两条边相等的三角形叫做等腰三角形.
2.性质:
(1)具有三角形的一切性质.
(2)两底角相等(等边对等角)
(3)顶角的平分线,底边中线,底边上的高互相重合(三线合一)
(4)等边三角形的各角都相等,且都等于60°.
3.判定:
(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);
(2)三个角都相等的三角形是等边三角形;
(3)有一个角为60°的等腰三角形是等边三角形.
要点诠释:
(1)腰、底、顶角、底角是等腰三角形特有的概念;
(2)等边三角形是特殊的等腰三角形.
考点二、直角三角形
1.直角三角形:有一个角是直角的三角形叫做直角三角形.
2性质:
(1)直角三角形中两锐角互余.
(2)直角三角形中,30°锐角所对的直角边等于斜边的一半.
(3)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.
(4)勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方.
(5)勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.
(6)直角三角形中,斜边上的中线等于斜边的一半.
3.判定:
(1)有两内角互余的三角形是直角三角形.
(2)一条边上的中线等于该边的一半,则这条边所对的角是直角,这个三角形是直角三角形.
(3)如果三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形,第三边为斜边.
【典型例题】
类型一、等腰三角形
1.如图,等腰三角形一腰上的高与底边所成的角等于( )
A.顶角的2倍 B.顶角的一半 C.顶角 D.底角的一半
【思路点拨】等角的余角相等.
【答案】B.
【解析】如图,△ABC中,AB=AC,BD⊥AC于D,所以∠ABC=∠C,∠BDC=90°,所以∠DBC=90°-∠C=
90°-(180-∠A)= ∠A,
【总结升华】本题适用于任何一种等腰三角形,可以试着证明在钝角三角形中结论一样成立;总结规律,等腰三角形一腰上的高与底边所成的角等于顶角的一半.
举一反三:
【变式】如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是△ABC、△BCD的角平分线,则图中的等腰三角形有( )A.5个 B.4个 C.3个 D.2个
【答案】A.
2.(2015秋•南通校级月考)如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=30cm,DE=2cm,则BC= cm.
【思路点拨】作出辅助线后根据等腰三角形的性质得出BE=30,DE=2,进而得出△BEM为等边三角形,△EFD为等边三角形,从而得出BN的长,进而求出答案.
【答案】32;
【解析】
解:延长ED交BC于M,延长AD交BC于N,作DF∥BC,
∵AB=AC,AD平分∠BAC,
∴AN⊥BC,BN=CN,
∵∠EBC=∠E=60°,
∴△BEM为等边三角形,
∴△EFD为等边三角形,
∵BE=30,DE=2,
∴DM=28,
∵△BEM为等边三角形,
∴∠EMB=60°,
∵AN⊥BC,
∴∠DNM=90°,
∴∠NDM=30°,
∴NM=14,
∴BN=16,
∴BC=2BN=32,
故答案为32.
【总结升华】本题主要考查了等腰三角形的性质和等边三角形的性质,能求出MN的长是解决问题的关键.
类型二、直角三角形
3.将一张矩形纸片如图所示折叠,使顶点落在点.已知,,则折痕的长为( )
A. B. C. D.
【思路点拨】直角三角形是常见的几何图形,在习题中比较多的利用数形结合解决相应的问题.常用的是两锐角互余,三边满足勾股定理和直角三角形中,30°角所对的边等于斜边的一半.
【答案】C.
【解析】由折叠可知,∠CED=∠C′ED =30°,因为在矩形ABCD中,∠C等于90°,CD=AB=2,
所以在Rt△DCE中,DE=2CD=4.故选C.
【总结升华】折叠题型一定要注意对应的边相等,对应的角相等.
【变式】 如图,一张直角三角形纸片,两直角边AC=4cm,BC=8cm,将△ABC折叠,点B与点A重合,折痕为DE,则DE的长为( ).
A. B. C. D.5
【答案】B.
解析:由折叠可知,AD=BD,DE⊥AB, ∴BE=AB
设BD为x,则CD=8-x
∵∠C=90°,AC=4,BC=8,∴AC2+BC2=AB2
∴AB2=42+82=80,∴AB=,∴BE=
在Rt△ACD中,AC2+CD2=AD2 ,∴42+(8-x)2=x2,解得x=5
在Rt△BDE中,BE2+DE2=BD2,即()2+DE2=52,∴DE=, 故选B.
4.已知:在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D.
(1)若∠BAC=30°,求证: AD=BD;
(2)若AP平分∠BAC且交BD于P,求∠BPA的度数.
图1 图2
【思路点拨】(1)利用直角三角形两锐角互余,求得∠ABD=∠A=30°,得出AD=BD.
(2)利用三角形内角和及角平分线定义或利用三角形外角性质.
【答案与解析】
(1)证明:∵∠BAC=30°,∠C=90°,∴∠ABC=60°
又∵ BD平分∠ABC, ∴∠ABD=30°,∴ ∠BAC =∠ABD,∴BD=AD;
(2)解法一: ∵∠C=90°,∴∠BAC+∠ABC=90°
∴=45°
∵ BD平分∠ABC,AP平分∠BAC
∠BAP=,∠ABP=
即∠BAP+∠ABP=45°
∴∠APB=180°-45°=135°
解法二: ∵∠C=90°,∴∠BAC+∠ABC=90°
∴=45°
∵BD平分∠ABC,AP平分∠BAC
∠DBC=,∠PAC=
∴∠DBC+∠PAD=45°
∴∠APB=∠PDA+∠PAD =∠DBC+∠C+∠PAD=∠DBC+∠PAD+∠C=45°+90°=135°.
【总结升华】本题利用了:1、直角三角形的性质,两锐角互余,2、角的平分线的性质,3、三角形的外角与内角的关系.
类型三、综合运用
5 . 已知ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5.
(1)k为何值时,ΔABC是以BC为斜边的直角三角形?
(2)k为何值时,ΔABC是等腰三角形?并求出ΔABC的周长。
【思路点拨】△ABC的两边的长是关于x的一元二次方程的两个实数根,应该想到一元二次方程中根与系数的关系.
【答案与解析】(1)∵AB、ACAB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,
∴AB+AC=2k+3,AB×AC= k2+3k+2
又∵ΔABC是以BC为斜边的直角三角形,BC=5
∴
∴
即
∴
当k=-5时,方程为
解得(不合题意,舍去)
当k=2时,方程为
解得
∴当k=2时,ΔABC是以BC为斜边的直角三角形.
(2)当ΔABC是等腰三角形时,则有①AB=AC,②AB=BC,③AB=BC三种情况:
∵△==1>0
∴AB≠AC,故第一种情况不成立;
当AB=BC或AC=BC时,5是方程x2-(2k+3)x+k2+3k+2=0的根
∴
当k=3时,,
∴
∴等腰三角形的边长分别是5,5,4.周长为14;
当k=4时,,
∴
所以等腰三角形的边长是5,5,6,周长是16.
【总结升华】当三角形是等腰三角形并且未明确哪两边为腰时,要注意分类讨论.
【变式】已知等腰三角形三边的长为a、b、c且a=c,若关于x的一元二次方程ax2-bx+c=0的两根之差为,则等腰三角形的一个底角是( ).
A. 150 B. 300 C. 450 D. 600
【答案】B.
6.(2015春•威海期末)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,EH⊥AB,垂足是H.在AB上取一点M,使BM=2DE,连接ME.求证:ME⊥BC.
【思路点拨】根据EH⊥AB于H,得到△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM是等腰直角三角形,再根据等腰直角三角形的性质求解即可.
【答案与解析】解:∵∠BAC=90°,AB=AC,
∴∠B=∠C=45°,
∵EH⊥AB于H,
∴△BEH是等腰直角三角形,
∴HE=BH,∠BEH=45°,
∵AE平分∠BAD,AD⊥BC,
∴DE=HE,
∴DE=BH=HE,
∵BM=2DE,
∴HE=HM,
∴△HEM是等腰直角三角形,
∴∠MEH=45°,
∴∠BEM=45°+45°=90°,
∴ME⊥BC.
【总结升华】本题考查等腰直角三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,熟记性质并证明出等腰直角三角形是解题的关键.
【高清课堂:等腰三角形与直角三角形 例6】
【变式】如图,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC交AC的延长线于M,连接CD,给出四个结论:①∠ADC=45°;②BD=AE;③AC+CE=AB;④ AB-BC=2MC;其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个
【答案】D.
01中考总复习:实数--知识讲解(基础): 这是一份01中考总复习:实数--知识讲解(基础),共8页。
中考数学一轮总复习16《特殊三角形》知识讲解+巩固练习(基础版)(含答案): 这是一份中考数学一轮总复习16《特殊三角形》知识讲解+巩固练习(基础版)(含答案),共14页。
中考总复习:图形的变换--知识讲解(基础): 这是一份中考总复习:图形的变换--知识讲解(基础),共14页。