还剩15页未读,
继续阅读
所属成套资源:中考数学专题复习习题(知识讲解+巩固提升)
成套系列资料,整套一键下载
中考总复习:平面直角坐标系与一次函数、反比例函数--知识讲解(提高)
展开
这是一份中考总复习:平面直角坐标系与一次函数、反比例函数--知识讲解(提高),共1页。主要包含了考纲要求,知识网络,考点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。
责编:常春芳
【考纲要求】
⒈结合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想;
⒉会确定函数自变量的取值范围,即能用三种方法表示函数,又能恰当地选择图象去描述两个变量之间的关系;
⒊理解正比例函数、反比例函数和一次函数的概念,会画他们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决有关的实际问题.
【知识网络】
【考点梳理】
考点一、平面直角坐标系
1.平面直角坐标系
平面内两条有公共原点且互相垂直的数轴构成了平面直角坐标系,坐标平面内一点对应的有序实数对叫做这点的坐标.在平面内建立了直角坐标系,就可以把“形”(平面内的点)和“数”(有序实数对)紧密结合起来.
2.各象限内点的坐标的特点、坐标轴上点的坐标的特点
点P(x,y)在第一象限;
点P(x,y)在第二象限;
点P(x,y)在第三象限;
点P(x,y)在第四象限;
点P(x,y)在x轴上,x为任意实数;
点P(x,y)在y轴上,y为任意实数;
点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0).
3.两条坐标轴夹角平分线上点的坐标的特征
点P(x,y)在第一、三象限夹角平分线上x与y相等;
点P(x,y)在第二、四象限夹角平分线上x与y互为相反数.
4.和坐标轴平行的直线上点的坐标的特征
位于平行于x轴的直线上的各点的纵坐标相同;
位于平行于y轴的直线上的各点的横坐标相同.
5.关于x轴、y轴或原点对称的点的坐标的特征
点P与点p′关于x轴对称横坐标相等,纵坐标互为相反数;
点P与点p′关于y轴对称纵坐标相等,横坐标互为相反数;
点P与点p′关于原点对称横、纵坐标均互为相反数.
6.点P(x,y)到坐标轴及原点的距离
(1)点P(x,y)到x轴的距离等于;
(2)点P(x,y)到y轴的距离等于;
(3)点P(x,y)到原点的距离等于.
7.在平面直角坐标系内两点之间的距离公式
如果直角坐标平面内有两点,那么A、B两点的距离为:
.
两种特殊情况:
(1)在直角坐标平面内,轴或平行于轴的直线上的两点的距离为:
(2)在直角坐标平面内,轴或平行于轴的直线上的两点的距离为:
要点诠释:
(1)注意:x轴和y轴上的点,不属于任何象限;
(2)平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标.
考点二、函数
1.函数的概念
设在某个变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它相对应,那么就说y是x的函数,x叫做自变量.
2.自变量的取值范围
对于实际问题,自变量取值必须使实际问题有意义.对于纯数学问题,自变量取值应保证数学式子有意义.
3.表示方法
⑴解析法;⑵列表法;⑶图象法.
4.画函数图象
(1)列表:列表给出自变量与函数的一些对应值;
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.
要点诠释:
(1)在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量;
(2)确定自变量取值范围的原则:①使代数式有意义;②使实际问题有意义.
考点三、几种基本函数(定义→图象→性质)
1.正比例函数及其图象性质
(1)正比例函数:如果y=kx(k是常数,k≠0),那么y叫做x的正比例函数.
(2)正比例函数y=kx( k≠0)的图象:
过(0,0),(1,K)两点的一条直线.
(3)正比例函数y=kx (k≠0)的性质
①当k>0时,图象经过第一、三象限,y随x的增大而增大;
②当k<0时,图象经过第二、四象限,y随x的增大而减小 .
2.一次函数及其图象性质
(1)一次函数:如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.
(2)一次函数y=kx+b(k≠0)的图象
(3)一次函数y=kx+b(k≠0)的图象的性质
一次函数y=kx+b的图象是经过(0,b)点和点的一条直线.
①当k>0时,y随x的增大而增大;
②当k<0时,y随x的增大而减小.
(4)用函数观点看方程(组)与不等式
①任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:一次函数y=kx+b(k,b为常数,k≠0),当y=0时,求相应的自变量的值,从图象上看,相当于已知直线y=kx+b,确定它与x轴交点的横坐标.
②二元一次方程组对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标.
③任何一元一次不等式都可以转化ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,解一元一次不等式可以看做:当一次函数值大于0或小于0时,求自变量相应的取值范围.
要点诠释:
(1)当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例;
(2)确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k.
确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b.
解这类问题的一般方法是待定系数法.
(3)直线y1=k1x+b1与直线y2=k2x+b2(k1≠0 ,k2≠0)的位置关系.
①k1≠k2y1与y2相交;
②y1与y2相交于y轴上同一点(0,b1)或(0,b2);
③y1与y2平行;
④y1与y2重合.
3.反比例函数及其图象性质
(1)定义:一般地,形如(为常数,)的函数称为反比例函数.
三种形式:(k≠0)或(k≠0)或xy=k(k≠0).
(2)反比例函数解析式的特征:
①等号左边是函数,等号右边是一个分式.分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1;
②比例系数;
③自变量的取值为一切非零实数;
④函数的取值是一切非零实数.
(3)反比例函数的图象
①图象的画法:描点法
列表(应以O为中心,沿O的两边分别取三对或以上互为相反的数);
描点(由小到大的顺序);
连线(从左到右光滑的曲线).
②反比例函数的图象是双曲线,(为常数,)中自变量,函数值,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交.
③反比例函数的图象是轴对称图形(对称轴是和)和中心对称图形(对称中心是坐标原点).
④反比例函数()中比例系数的几何意义是:过双曲线 ()上任意点引轴、轴的垂线,所得矩形面积为.
(4)反比例函数性质:
(5)反比例函数解析式的确定:
利用待定系数法(只需一对对应值或图象上一个点的坐标即可求出)
(6)“反比例关系”与“反比例函数”:
成反比例的关系式不一定是反比例函数,但是反比例函数中的两个变量必成反比例关系.
(7)反比例函数的应用
反比例函数中反比例系数的几何意义,如下图,过反比例函数图像上任一点 作x轴、y轴的垂线PM,PN,垂足为M、N,则所得的矩形PMON的面积S=PMPN=.
∴.
(8)正比例函数和反比例函数的交点问题
若正比例函数(≠0),反比例函数,则
当时,两函数图象无交点;
当时,两函数图象有两个交点,坐标分别为(,),(,).
由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.
要点诠释:
(1)用待定系数法求解析式(列方程[组]求解);
(2)利用一次(正比例)函数、反比例函数的图象求不等式的解集.
【典型例题】
类型一、坐标平面有关的计算
1.已知:如图所示,
(1)写出△ABC三个顶点的坐标;
(2)作出△ABC关于x轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标;
(3)作出△ABC关于y轴对称的△A″B″C″,并写出△A″B″C″三个顶点的坐标.
【思路点拨】
(1)直接根据图形写出△ABC三个顶点的坐标;
(2)找到△ABC的各顶点关于x轴对称的对称点并顺次连接成图形;
(3)找到△ABC的各顶点关于y轴对称的对称点并顺次连接成图形.
【答案与解析】
(1)△ABC三个顶点的坐标分别为:A(4,3),B(3,1),C(1,2);
(2)所画图形如下所示,△A′B′C′即为所求,△A′B′C′三个顶点的坐标分别为:
A′(4,-3),B′(3,-1),C′(1,-2);
(3)所画图形如下所示,△A″B″C″即为所求,△A″B″C″三个顶点的坐标分别为:
A″(-4,3),B″(-3,1),C″(-1,2).
【总结升华】作轴对称图形找对称点是关键.
举一反三:
【变式】如图所示,△ABC的顶点坐标分别为A(-4,-3),B(0,-3),C(-2,1),如将B点向右平移2个单位后再向上平移4个单位到达B1点,若设△ABC的面积为S1,△AB1C的面积为S2,则S1,S2的大小关系为( )
A.S1>S2 B.S1=S2 C.S1<S2 D.不能确定
【答案】选B.(点B的平移是关键,平移后AB=CB1,两个三角形等底等高).
2.(1)如图所示,在平面直角坐标系xOy中,B1(0,1),B2(0,3),B3(0,6),B4(0,10),…,以B1B2为对角线作第一个正方形A1B1C1B2,以B2B3为对角线作第二个正方形A2B2C2B3,以B3B4为对角线作第三个正方形A3B3C3B4,……如果所作正方形的对角线都在y轴上,且的长度依次增加1个单位,顶点都在第一象限内(n≥1,且n为整数),那么A1的纵坐标为________,用n的代数式表示的纵坐标为_______;
(2)若设的坐标为(x,y),求y关于x的函数关系式.
【思路点拨】
作A1D⊥y轴于点D,可推出A1的纵坐标=B1D+B1O=1+1= =2,
A2的纵坐标= =4.5,则An的纵坐标为 .
【答案与解析】
(1)2,;
(2)A1的横坐标等于,
A2的横坐标等于,
A3的横坐标等于,
A4的横坐标等于,
……
∴ 的横坐标等于,纵坐标等于.
∵ ,
,
∴ ,代入消去n+1,得.
∴ y关于x的解析式为,说明点A1,A2,A3,A4,…,都在抛物线上.
如图所示.
【总结升华】解决本题的关键是观察图形得到点的纵坐标的特点.
类型二、一次函数
3.(2015•泰州)已知一次函数y=2x﹣4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1、d2.
(1)当P为线段AB的中点时,求d1+d2的值;
(2)直接写出d1+d2的范围,并求当d1+d2=3时点P的坐标;
(3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值.
【思路点拨】
(1)对于一次函数解析式,求出A与B的坐标,即可求出P为线段AB的中点时d1+d2的值;
(2)根据题意确定出d1+d2的范围,设P(m,2m﹣4),表示出d1+d2,分类讨论m的范围,根据d1+d2=3求出m的值,即可确定出P的坐标;
(3)设P(m,2m﹣4),表示出d1与d2,由P在线段上求出m的范围,利用绝对值的代数意义表示出d1与d2,代入d1+ad2=4,根据存在无数个点P求出a的值即可.
【答案与解析】
解:(1)对于一次函数y=2x﹣4,
令x=0,得到y=﹣4;令y=0,得到x=2,
∴A(2,0),B(0,﹣4),
∵P为AB的中点,
∴P(1,﹣2),
则d1+d2=3;
(2)①d1+d2≥2;
②设P(m,2m﹣4),
∴d1+d2=|m|+|2m﹣4|,
当0≤m≤2时,d1+d2=m+4﹣2m=4﹣m=3,
解得:m=1,此时P1(1,﹣2);
当m>2时,d1+d2=m+2m﹣4=3,
解得:m=,此时P2(,);
当m<0时,不存在,
综上,P的坐标为(1,﹣2)或(,);
(3)设P(m,2m﹣4),
∴d1=|2m﹣4|,d2=|m|,
∵P在线段AB上,
∴0≤m≤2,
∴d1=4﹣2m,d2=m,
∵d1+ad2=4,
∴4﹣2m+am=4,即(a﹣2)m=0,
∵有无数个点,
∴a=2.
【总结升华】此题属于一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,线段中点坐标公式,绝对值的代数意义,以及坐标与图形性质,熟练掌握绝对值的代数意义是解本题的关键.
举一反三:
【变式】已知:如图所示,在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM∥x轴.点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,连接OD.
(1)求b的值和点D的坐标.
(2)设点P在x轴的正半轴上,若△POD是等腰三角形,求点P的坐标.
【答案】
(1)因为点B与点A关于原点对称,点A的坐标为(1,0),所以点B的坐标为(-1,0).
因为直线y=x+b(b为常数)经过点B,所以0=-1+b,解得b=1,所以直线为y=x+1.
因为点C的坐标为(0,4),直线CM∥x轴,所以点D的纵坐标为4.
因为直线y=x+1与直线CM交于点D,当y=4时,4=x+1,解得x=3,
所以点D的坐标为(3,4).
(2)因为O为原点,点D的坐标为(3,4),点C的坐标为(0,4),所以OC=4,CD=3,
所以OD=5.
因为点P在x轴的正半轴上,若△POD是等腰三角形,则分三种情况:
①当PD=PO时,有,
因为,
所以,解得.
所以点P的坐标为(,0).
②当PD=OD时,PO=2CD=6,
所以点P的坐标为(6,0).
③当OD=PO时,PO=5,
所以点P的坐标为(5,0).
类型三、反比例函数
4.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.
(1)求边AB的长;
(2)求反比例函数的解析式和n的值;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.
【思路点拨】
(1)由点E的纵坐标得出OA=4,再根据tan∠BOA= 即可求出AB的长度;
(2)根据(1)求出点B的坐标,再根据点D是OB的中点求出点D的坐标,然后利用待定系数法求函数解析式求出反比例函数解析式,再把点E的坐标代入进行计算即可求出n的值;
(3)利用反比例函数解析式求出点F的坐标,从而得到CF的长度,连接FG,根据折叠的性质可得FG=OG,然后用OG表示出CG的长度,再利用勾股定理列式计算即可求出OG的长度.
【答案与解析】
解:(1)∵点E(4,n)在边AB上,∴OA=4,
在Rt△AOB中,∵tan∠BOA=,∴AB=OA×tan∠BOA=4×=2.
(2)由(1),可得点B的坐标为(4,2),
∵点D为OB的中点,∴点D(2,1).
∵点D在反比例函数(k≠0)的图象上,∴,解得k=2.
∴反比例函数解析式为.
又∵点E(4,n)在反比例函数图象上,∴.
(3)如图,设点F(a,2),
∵反比例函数的图象与矩形的边BC交于点F,
∴,解得a=1.∴CF=1.
连接FG,设OG=t,则OG=FG=t,CG=2﹣t,
在Rt△CGF中,GF2=CF2+CG2,即t2=(2﹣t)2+12,
解得t=,∴OG=t=.
【总结升华】本题综合考查了反比例函数的知识,包括待定系数法求函数解析式,点在函数图象上,锐角三角函数的定义,以及折叠的性质,求出点D的坐标,然后求出反比例函数解析式是解题的关键.
举一反三:
【高清课程名称: 反比例函数 高清ID号: 408332 关联的位置名称(播放点名称):例5】
【变式1】(2015•枣庄)如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),B(3,n)两点.
(1)求一次函数的解析式;
(2)根据图象直接写出使kx+b<成立的x的取值范围;
(3)求△AOB的面积.
【答案】
解:(1)∵点A(m,6),B(3,n)两点在反比例函数y=(x>0)的图象上,
∴m=1,n=2,
即A(1,6),B(3,2).
又∵点A(m,6),B(3,n)两点在一次函数y=kx+b的图象上,
∴.
解得,
则该一次函数的解析式为:y=﹣2x+8;
(2)根据图象可知使kx+b<成立的x的取值范围是0<x<1或x>3;
(3)分别过点A、B作AE⊥x轴,BC⊥x轴,垂足分别是E、C点.直线AB交x轴于D点.
令﹣2x+8=0,得x=4,即D(4,0).
∵A(1,6),B(3,2),
∴AE=6,BC=2,
∴S△AOB=S△AOD﹣S△BOD=×4×6﹣×4×2=8.
【变式2】已知双曲线和直线相交于点和点,且.
求的值.
【答案】
由得.∴.
故. ∴.∴或.
又即,舍去,故所求的值为.
类型四、函数综合应用
5.如图,已知直角坐标系内有一条直线和一条曲线,这条直线和轴、轴分别交于点A和点B,且OA=OB=1.这条曲线是函数的图像在第一象限的一个分支,点P是这条曲线上任意一点,它的坐标是(、),由点P向轴、轴所作的垂线PM、PN,垂足是M、N,直线AB分别交PM、PN于点E、F.
(1)分别求出点E、F的坐标(用的代数式表示点E的坐标,用的代数式表示点F的坐标,只须写出结果,不要求写出计算过程);
(2)求△OEF的面积(结果用含、的代数式表示);
(3)△AOF与△BOE是否一定相似,请予以证明.如果不一定相似或一定不相似,简要说明理由;
(4)当点P在曲线上移动时,△OEF随之变动,指出在△OEF的三个内角中,大小始终保持不变的那个角的大小,并证明你的结论.
【思路点拨】
在证明三角形相似时,∠EBO=∠OAF是较明显的,关键是证明两夹边对应成比例,这里用到了点P(,)在双曲线上这一重要条件,挖掘形的特征,并把形的因素转化为相应的代数式形式是解本题的关键.
【答案与解析】
(1)点E(,),点F(,)
(2)
=
=
(3)△AOF与△BOE一定相似,下面给出证明
∵OA=OB=1
∴∠FAO=∠EBO
BE=
AF=
∵点P(,)是曲线上一点
∴,即AF·BE=OB·OA=1
∴
∴△AOF∽△BOE
(4)当点P在曲线上移动时,△OEF中∠EOF一定等于45°,由(3)知,∠AFO=∠BOE,于是由∠AFO=∠B+∠BOF及∠BOE=∠BOF+∠EOF
∴∠EOF=∠B=45°.
【总结升华】此题第(3)(4)问均为探索性问题,(4)以(3)为基础,在肯定(3)的结论后,(4)的解决就不难了.
举一反三:
【高清课程名称:平面直角坐标系与一次函数 高清ID号: 406069
关联的位置名称(播放点名称):例4-例5】
【变式1】如图所示,点A的坐标为(1,0),点B在直线y=-x上运动,当线段AB最短时,点B的坐标为( ).
A.(0,0) B.(,-) C.(,) D.(,)
【答案】当AB与直线y=-x垂直时,AB最短.(如图所示)
∵直线y=-x,
∴∠AOB=45°.
∴△AOB是等腰直角三角形.
过B作BC⊥x轴于C.
∵ A(1,0),∴OA=1,.
∴此题选B.
【变式2】在同一坐标系中,一次函数y=(1-k)x+2k+l与反比例函数的图象没有交点,则常数k的取值范围是________.
【答案】
由题意知
∴ .
∴ 两函数图象无交点,
∴
∴ .
6.如图所示,点A(m,m+1),B(m+3,m-1)都在反比例函数的图象上.
(1)求m、k的值;
(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的解析式.
【思路点拨】
(1)直接把A、B两点的坐标代入解析式中就可以得到关于m的方程,解方程即可;
(2)存在两种情况:当M点在x轴的正半轴上,N点在y轴的正半轴上时和当M点在x轴的负半轴上,N点在y轴的负半轴上时.无论哪种情况都可以利用平移知识求出M、N的坐标,然后利用待定系数法确定直线MN的解析式;
【答案与解析】
(1)由题意可知m(m+1)=(m+3)(m-1).
解得m=3.
∴ A(3,4),B(6,2).
∴ k=4×3=12.
(2)存在两种情况,如图所示.①当M点在x轴的正半轴上,N点在y轴的正半轴上时,
设M1点坐标为(x1,0),N1点坐标为(0,y1).
∵ 四边形AN1M1B为平行四边形,
∴ 点A对应点N1,点B对应点M1.
∵ 点A的横坐标为3,点B的纵坐标为2.
∴ 线段N1M1可看做由线段AB向左平移3个单位,再向下平移2个单位得到的.
∴ N1点的坐标为(0,4-2),即N1(0,2);
M1点的坐标为(6-3,0),即M1(3,0).
设直线M1N1的函数表达式为y=k1x+2,把x=3,y=0代入,解得.
∴ 直线M1N1的函数表达式为.
②当M点在x轴的负半轴上,N点在y轴的负半轴上时,
设M2点坐标为(x2,0),N2点坐标为(0,y2).
∵ AB∥N1M1,AB∥M2N2,AB=N1M1,AB=M2N2,
∴ N1M1∥M2N2,N1M1=M2N2.
∴ 线段M2N2与线段N1M1关于原点O成中心对称.
∴ M1点坐标为(-3,0),N2点坐标为(0,-2).
设直线M2N2的函数表达式为,把x=-3,y=0代入,解得.
∴ 直线M2N2的函数表达式为.
综上所述,直线MN的函数表达式为或.
【总结升华】本题主要考查了一次函数与反比例函数的综合应用.反比例函数
k的符号
k>0
k<0
图像
性质
①x的取值范围是x0,
y的取值范围是y0;
②当k>0时,函数图像的两个分支分别
在第一、三象限.在每个象限内,y
随x 的增大而减小.
①x的取值范围是x0,
y的取值范围是y0;
②当k<0时,函数图像的两个分支分别
在第二、四象限.在每个象限内,y
随x 的增大而增大.
责编:常春芳
【考纲要求】
⒈结合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想;
⒉会确定函数自变量的取值范围,即能用三种方法表示函数,又能恰当地选择图象去描述两个变量之间的关系;
⒊理解正比例函数、反比例函数和一次函数的概念,会画他们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决有关的实际问题.
【知识网络】
【考点梳理】
考点一、平面直角坐标系
1.平面直角坐标系
平面内两条有公共原点且互相垂直的数轴构成了平面直角坐标系,坐标平面内一点对应的有序实数对叫做这点的坐标.在平面内建立了直角坐标系,就可以把“形”(平面内的点)和“数”(有序实数对)紧密结合起来.
2.各象限内点的坐标的特点、坐标轴上点的坐标的特点
点P(x,y)在第一象限;
点P(x,y)在第二象限;
点P(x,y)在第三象限;
点P(x,y)在第四象限;
点P(x,y)在x轴上,x为任意实数;
点P(x,y)在y轴上,y为任意实数;
点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0).
3.两条坐标轴夹角平分线上点的坐标的特征
点P(x,y)在第一、三象限夹角平分线上x与y相等;
点P(x,y)在第二、四象限夹角平分线上x与y互为相反数.
4.和坐标轴平行的直线上点的坐标的特征
位于平行于x轴的直线上的各点的纵坐标相同;
位于平行于y轴的直线上的各点的横坐标相同.
5.关于x轴、y轴或原点对称的点的坐标的特征
点P与点p′关于x轴对称横坐标相等,纵坐标互为相反数;
点P与点p′关于y轴对称纵坐标相等,横坐标互为相反数;
点P与点p′关于原点对称横、纵坐标均互为相反数.
6.点P(x,y)到坐标轴及原点的距离
(1)点P(x,y)到x轴的距离等于;
(2)点P(x,y)到y轴的距离等于;
(3)点P(x,y)到原点的距离等于.
7.在平面直角坐标系内两点之间的距离公式
如果直角坐标平面内有两点,那么A、B两点的距离为:
.
两种特殊情况:
(1)在直角坐标平面内,轴或平行于轴的直线上的两点的距离为:
(2)在直角坐标平面内,轴或平行于轴的直线上的两点的距离为:
要点诠释:
(1)注意:x轴和y轴上的点,不属于任何象限;
(2)平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标.
考点二、函数
1.函数的概念
设在某个变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它相对应,那么就说y是x的函数,x叫做自变量.
2.自变量的取值范围
对于实际问题,自变量取值必须使实际问题有意义.对于纯数学问题,自变量取值应保证数学式子有意义.
3.表示方法
⑴解析法;⑵列表法;⑶图象法.
4.画函数图象
(1)列表:列表给出自变量与函数的一些对应值;
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.
要点诠释:
(1)在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量;
(2)确定自变量取值范围的原则:①使代数式有意义;②使实际问题有意义.
考点三、几种基本函数(定义→图象→性质)
1.正比例函数及其图象性质
(1)正比例函数:如果y=kx(k是常数,k≠0),那么y叫做x的正比例函数.
(2)正比例函数y=kx( k≠0)的图象:
过(0,0),(1,K)两点的一条直线.
(3)正比例函数y=kx (k≠0)的性质
①当k>0时,图象经过第一、三象限,y随x的增大而增大;
②当k<0时,图象经过第二、四象限,y随x的增大而减小 .
2.一次函数及其图象性质
(1)一次函数:如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.
(2)一次函数y=kx+b(k≠0)的图象
(3)一次函数y=kx+b(k≠0)的图象的性质
一次函数y=kx+b的图象是经过(0,b)点和点的一条直线.
①当k>0时,y随x的增大而增大;
②当k<0时,y随x的增大而减小.
(4)用函数观点看方程(组)与不等式
①任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:一次函数y=kx+b(k,b为常数,k≠0),当y=0时,求相应的自变量的值,从图象上看,相当于已知直线y=kx+b,确定它与x轴交点的横坐标.
②二元一次方程组对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标.
③任何一元一次不等式都可以转化ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,解一元一次不等式可以看做:当一次函数值大于0或小于0时,求自变量相应的取值范围.
要点诠释:
(1)当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例;
(2)确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k.
确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b.
解这类问题的一般方法是待定系数法.
(3)直线y1=k1x+b1与直线y2=k2x+b2(k1≠0 ,k2≠0)的位置关系.
①k1≠k2y1与y2相交;
②y1与y2相交于y轴上同一点(0,b1)或(0,b2);
③y1与y2平行;
④y1与y2重合.
3.反比例函数及其图象性质
(1)定义:一般地,形如(为常数,)的函数称为反比例函数.
三种形式:(k≠0)或(k≠0)或xy=k(k≠0).
(2)反比例函数解析式的特征:
①等号左边是函数,等号右边是一个分式.分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1;
②比例系数;
③自变量的取值为一切非零实数;
④函数的取值是一切非零实数.
(3)反比例函数的图象
①图象的画法:描点法
列表(应以O为中心,沿O的两边分别取三对或以上互为相反的数);
描点(由小到大的顺序);
连线(从左到右光滑的曲线).
②反比例函数的图象是双曲线,(为常数,)中自变量,函数值,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交.
③反比例函数的图象是轴对称图形(对称轴是和)和中心对称图形(对称中心是坐标原点).
④反比例函数()中比例系数的几何意义是:过双曲线 ()上任意点引轴、轴的垂线,所得矩形面积为.
(4)反比例函数性质:
(5)反比例函数解析式的确定:
利用待定系数法(只需一对对应值或图象上一个点的坐标即可求出)
(6)“反比例关系”与“反比例函数”:
成反比例的关系式不一定是反比例函数,但是反比例函数中的两个变量必成反比例关系.
(7)反比例函数的应用
反比例函数中反比例系数的几何意义,如下图,过反比例函数图像上任一点 作x轴、y轴的垂线PM,PN,垂足为M、N,则所得的矩形PMON的面积S=PMPN=.
∴.
(8)正比例函数和反比例函数的交点问题
若正比例函数(≠0),反比例函数,则
当时,两函数图象无交点;
当时,两函数图象有两个交点,坐标分别为(,),(,).
由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.
要点诠释:
(1)用待定系数法求解析式(列方程[组]求解);
(2)利用一次(正比例)函数、反比例函数的图象求不等式的解集.
【典型例题】
类型一、坐标平面有关的计算
1.已知:如图所示,
(1)写出△ABC三个顶点的坐标;
(2)作出△ABC关于x轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标;
(3)作出△ABC关于y轴对称的△A″B″C″,并写出△A″B″C″三个顶点的坐标.
【思路点拨】
(1)直接根据图形写出△ABC三个顶点的坐标;
(2)找到△ABC的各顶点关于x轴对称的对称点并顺次连接成图形;
(3)找到△ABC的各顶点关于y轴对称的对称点并顺次连接成图形.
【答案与解析】
(1)△ABC三个顶点的坐标分别为:A(4,3),B(3,1),C(1,2);
(2)所画图形如下所示,△A′B′C′即为所求,△A′B′C′三个顶点的坐标分别为:
A′(4,-3),B′(3,-1),C′(1,-2);
(3)所画图形如下所示,△A″B″C″即为所求,△A″B″C″三个顶点的坐标分别为:
A″(-4,3),B″(-3,1),C″(-1,2).
【总结升华】作轴对称图形找对称点是关键.
举一反三:
【变式】如图所示,△ABC的顶点坐标分别为A(-4,-3),B(0,-3),C(-2,1),如将B点向右平移2个单位后再向上平移4个单位到达B1点,若设△ABC的面积为S1,△AB1C的面积为S2,则S1,S2的大小关系为( )
A.S1>S2 B.S1=S2 C.S1<S2 D.不能确定
【答案】选B.(点B的平移是关键,平移后AB=CB1,两个三角形等底等高).
2.(1)如图所示,在平面直角坐标系xOy中,B1(0,1),B2(0,3),B3(0,6),B4(0,10),…,以B1B2为对角线作第一个正方形A1B1C1B2,以B2B3为对角线作第二个正方形A2B2C2B3,以B3B4为对角线作第三个正方形A3B3C3B4,……如果所作正方形的对角线都在y轴上,且的长度依次增加1个单位,顶点都在第一象限内(n≥1,且n为整数),那么A1的纵坐标为________,用n的代数式表示的纵坐标为_______;
(2)若设的坐标为(x,y),求y关于x的函数关系式.
【思路点拨】
作A1D⊥y轴于点D,可推出A1的纵坐标=B1D+B1O=1+1= =2,
A2的纵坐标= =4.5,则An的纵坐标为 .
【答案与解析】
(1)2,;
(2)A1的横坐标等于,
A2的横坐标等于,
A3的横坐标等于,
A4的横坐标等于,
……
∴ 的横坐标等于,纵坐标等于.
∵ ,
,
∴ ,代入消去n+1,得.
∴ y关于x的解析式为,说明点A1,A2,A3,A4,…,都在抛物线上.
如图所示.
【总结升华】解决本题的关键是观察图形得到点的纵坐标的特点.
类型二、一次函数
3.(2015•泰州)已知一次函数y=2x﹣4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1、d2.
(1)当P为线段AB的中点时,求d1+d2的值;
(2)直接写出d1+d2的范围,并求当d1+d2=3时点P的坐标;
(3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值.
【思路点拨】
(1)对于一次函数解析式,求出A与B的坐标,即可求出P为线段AB的中点时d1+d2的值;
(2)根据题意确定出d1+d2的范围,设P(m,2m﹣4),表示出d1+d2,分类讨论m的范围,根据d1+d2=3求出m的值,即可确定出P的坐标;
(3)设P(m,2m﹣4),表示出d1与d2,由P在线段上求出m的范围,利用绝对值的代数意义表示出d1与d2,代入d1+ad2=4,根据存在无数个点P求出a的值即可.
【答案与解析】
解:(1)对于一次函数y=2x﹣4,
令x=0,得到y=﹣4;令y=0,得到x=2,
∴A(2,0),B(0,﹣4),
∵P为AB的中点,
∴P(1,﹣2),
则d1+d2=3;
(2)①d1+d2≥2;
②设P(m,2m﹣4),
∴d1+d2=|m|+|2m﹣4|,
当0≤m≤2时,d1+d2=m+4﹣2m=4﹣m=3,
解得:m=1,此时P1(1,﹣2);
当m>2时,d1+d2=m+2m﹣4=3,
解得:m=,此时P2(,);
当m<0时,不存在,
综上,P的坐标为(1,﹣2)或(,);
(3)设P(m,2m﹣4),
∴d1=|2m﹣4|,d2=|m|,
∵P在线段AB上,
∴0≤m≤2,
∴d1=4﹣2m,d2=m,
∵d1+ad2=4,
∴4﹣2m+am=4,即(a﹣2)m=0,
∵有无数个点,
∴a=2.
【总结升华】此题属于一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,线段中点坐标公式,绝对值的代数意义,以及坐标与图形性质,熟练掌握绝对值的代数意义是解本题的关键.
举一反三:
【变式】已知:如图所示,在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM∥x轴.点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,连接OD.
(1)求b的值和点D的坐标.
(2)设点P在x轴的正半轴上,若△POD是等腰三角形,求点P的坐标.
【答案】
(1)因为点B与点A关于原点对称,点A的坐标为(1,0),所以点B的坐标为(-1,0).
因为直线y=x+b(b为常数)经过点B,所以0=-1+b,解得b=1,所以直线为y=x+1.
因为点C的坐标为(0,4),直线CM∥x轴,所以点D的纵坐标为4.
因为直线y=x+1与直线CM交于点D,当y=4时,4=x+1,解得x=3,
所以点D的坐标为(3,4).
(2)因为O为原点,点D的坐标为(3,4),点C的坐标为(0,4),所以OC=4,CD=3,
所以OD=5.
因为点P在x轴的正半轴上,若△POD是等腰三角形,则分三种情况:
①当PD=PO时,有,
因为,
所以,解得.
所以点P的坐标为(,0).
②当PD=OD时,PO=2CD=6,
所以点P的坐标为(6,0).
③当OD=PO时,PO=5,
所以点P的坐标为(5,0).
类型三、反比例函数
4.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.
(1)求边AB的长;
(2)求反比例函数的解析式和n的值;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.
【思路点拨】
(1)由点E的纵坐标得出OA=4,再根据tan∠BOA= 即可求出AB的长度;
(2)根据(1)求出点B的坐标,再根据点D是OB的中点求出点D的坐标,然后利用待定系数法求函数解析式求出反比例函数解析式,再把点E的坐标代入进行计算即可求出n的值;
(3)利用反比例函数解析式求出点F的坐标,从而得到CF的长度,连接FG,根据折叠的性质可得FG=OG,然后用OG表示出CG的长度,再利用勾股定理列式计算即可求出OG的长度.
【答案与解析】
解:(1)∵点E(4,n)在边AB上,∴OA=4,
在Rt△AOB中,∵tan∠BOA=,∴AB=OA×tan∠BOA=4×=2.
(2)由(1),可得点B的坐标为(4,2),
∵点D为OB的中点,∴点D(2,1).
∵点D在反比例函数(k≠0)的图象上,∴,解得k=2.
∴反比例函数解析式为.
又∵点E(4,n)在反比例函数图象上,∴.
(3)如图,设点F(a,2),
∵反比例函数的图象与矩形的边BC交于点F,
∴,解得a=1.∴CF=1.
连接FG,设OG=t,则OG=FG=t,CG=2﹣t,
在Rt△CGF中,GF2=CF2+CG2,即t2=(2﹣t)2+12,
解得t=,∴OG=t=.
【总结升华】本题综合考查了反比例函数的知识,包括待定系数法求函数解析式,点在函数图象上,锐角三角函数的定义,以及折叠的性质,求出点D的坐标,然后求出反比例函数解析式是解题的关键.
举一反三:
【高清课程名称: 反比例函数 高清ID号: 408332 关联的位置名称(播放点名称):例5】
【变式1】(2015•枣庄)如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),B(3,n)两点.
(1)求一次函数的解析式;
(2)根据图象直接写出使kx+b<成立的x的取值范围;
(3)求△AOB的面积.
【答案】
解:(1)∵点A(m,6),B(3,n)两点在反比例函数y=(x>0)的图象上,
∴m=1,n=2,
即A(1,6),B(3,2).
又∵点A(m,6),B(3,n)两点在一次函数y=kx+b的图象上,
∴.
解得,
则该一次函数的解析式为:y=﹣2x+8;
(2)根据图象可知使kx+b<成立的x的取值范围是0<x<1或x>3;
(3)分别过点A、B作AE⊥x轴,BC⊥x轴,垂足分别是E、C点.直线AB交x轴于D点.
令﹣2x+8=0,得x=4,即D(4,0).
∵A(1,6),B(3,2),
∴AE=6,BC=2,
∴S△AOB=S△AOD﹣S△BOD=×4×6﹣×4×2=8.
【变式2】已知双曲线和直线相交于点和点,且.
求的值.
【答案】
由得.∴.
故. ∴.∴或.
又即,舍去,故所求的值为.
类型四、函数综合应用
5.如图,已知直角坐标系内有一条直线和一条曲线,这条直线和轴、轴分别交于点A和点B,且OA=OB=1.这条曲线是函数的图像在第一象限的一个分支,点P是这条曲线上任意一点,它的坐标是(、),由点P向轴、轴所作的垂线PM、PN,垂足是M、N,直线AB分别交PM、PN于点E、F.
(1)分别求出点E、F的坐标(用的代数式表示点E的坐标,用的代数式表示点F的坐标,只须写出结果,不要求写出计算过程);
(2)求△OEF的面积(结果用含、的代数式表示);
(3)△AOF与△BOE是否一定相似,请予以证明.如果不一定相似或一定不相似,简要说明理由;
(4)当点P在曲线上移动时,△OEF随之变动,指出在△OEF的三个内角中,大小始终保持不变的那个角的大小,并证明你的结论.
【思路点拨】
在证明三角形相似时,∠EBO=∠OAF是较明显的,关键是证明两夹边对应成比例,这里用到了点P(,)在双曲线上这一重要条件,挖掘形的特征,并把形的因素转化为相应的代数式形式是解本题的关键.
【答案与解析】
(1)点E(,),点F(,)
(2)
=
=
(3)△AOF与△BOE一定相似,下面给出证明
∵OA=OB=1
∴∠FAO=∠EBO
BE=
AF=
∵点P(,)是曲线上一点
∴,即AF·BE=OB·OA=1
∴
∴△AOF∽△BOE
(4)当点P在曲线上移动时,△OEF中∠EOF一定等于45°,由(3)知,∠AFO=∠BOE,于是由∠AFO=∠B+∠BOF及∠BOE=∠BOF+∠EOF
∴∠EOF=∠B=45°.
【总结升华】此题第(3)(4)问均为探索性问题,(4)以(3)为基础,在肯定(3)的结论后,(4)的解决就不难了.
举一反三:
【高清课程名称:平面直角坐标系与一次函数 高清ID号: 406069
关联的位置名称(播放点名称):例4-例5】
【变式1】如图所示,点A的坐标为(1,0),点B在直线y=-x上运动,当线段AB最短时,点B的坐标为( ).
A.(0,0) B.(,-) C.(,) D.(,)
【答案】当AB与直线y=-x垂直时,AB最短.(如图所示)
∵直线y=-x,
∴∠AOB=45°.
∴△AOB是等腰直角三角形.
过B作BC⊥x轴于C.
∵ A(1,0),∴OA=1,.
∴此题选B.
【变式2】在同一坐标系中,一次函数y=(1-k)x+2k+l与反比例函数的图象没有交点,则常数k的取值范围是________.
【答案】
由题意知
∴ .
∴ 两函数图象无交点,
∴
∴ .
6.如图所示,点A(m,m+1),B(m+3,m-1)都在反比例函数的图象上.
(1)求m、k的值;
(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的解析式.
【思路点拨】
(1)直接把A、B两点的坐标代入解析式中就可以得到关于m的方程,解方程即可;
(2)存在两种情况:当M点在x轴的正半轴上,N点在y轴的正半轴上时和当M点在x轴的负半轴上,N点在y轴的负半轴上时.无论哪种情况都可以利用平移知识求出M、N的坐标,然后利用待定系数法确定直线MN的解析式;
【答案与解析】
(1)由题意可知m(m+1)=(m+3)(m-1).
解得m=3.
∴ A(3,4),B(6,2).
∴ k=4×3=12.
(2)存在两种情况,如图所示.①当M点在x轴的正半轴上,N点在y轴的正半轴上时,
设M1点坐标为(x1,0),N1点坐标为(0,y1).
∵ 四边形AN1M1B为平行四边形,
∴ 点A对应点N1,点B对应点M1.
∵ 点A的横坐标为3,点B的纵坐标为2.
∴ 线段N1M1可看做由线段AB向左平移3个单位,再向下平移2个单位得到的.
∴ N1点的坐标为(0,4-2),即N1(0,2);
M1点的坐标为(6-3,0),即M1(3,0).
设直线M1N1的函数表达式为y=k1x+2,把x=3,y=0代入,解得.
∴ 直线M1N1的函数表达式为.
②当M点在x轴的负半轴上,N点在y轴的负半轴上时,
设M2点坐标为(x2,0),N2点坐标为(0,y2).
∵ AB∥N1M1,AB∥M2N2,AB=N1M1,AB=M2N2,
∴ N1M1∥M2N2,N1M1=M2N2.
∴ 线段M2N2与线段N1M1关于原点O成中心对称.
∴ M1点坐标为(-3,0),N2点坐标为(0,-2).
设直线M2N2的函数表达式为,把x=-3,y=0代入,解得.
∴ 直线M2N2的函数表达式为.
综上所述,直线MN的函数表达式为或.
【总结升华】本题主要考查了一次函数与反比例函数的综合应用.反比例函数
k的符号
k>0
k<0
图像
性质
①x的取值范围是x0,
y的取值范围是y0;
②当k>0时,函数图像的两个分支分别
在第一、三象限.在每个象限内,y
随x 的增大而减小.
①x的取值范围是x0,
y的取值范围是y0;
②当k<0时,函数图像的两个分支分别
在第二、四象限.在每个象限内,y
随x 的增大而增大.
相关资料
更多