|试卷下载
搜索
    上传资料 赚现金
    2021新高考数学二轮总复习专题七解析几何7.3直线圆圆锥曲线小综合题专项练学案含解析
    立即下载
    加入资料篮
    2021新高考数学二轮总复习专题七解析几何7.3直线圆圆锥曲线小综合题专项练学案含解析01
    2021新高考数学二轮总复习专题七解析几何7.3直线圆圆锥曲线小综合题专项练学案含解析02
    2021新高考数学二轮总复习专题七解析几何7.3直线圆圆锥曲线小综合题专项练学案含解析03
    还剩5页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021新高考数学二轮总复习专题七解析几何7.3直线圆圆锥曲线小综合题专项练学案含解析

    展开

    7.3 直线、圆、圆锥曲线小综合题专项练

    必备知识精要梳理

    1.直线与圆的位置关系根据圆心到直线的距离与圆的半径大小关系判定.

    2.圆与圆的位置关系有五种,即内含、内切、相交、外切、外离.判定方法是利用两圆心之间的距离与两圆半径的和、差关系.

    3.焦半径公式

    (1)M(x,y)是椭圆=1(a>b>0)上的一点,其焦点为F1(-c,0),F2(c,0),|MF1|=a+ex,|MF2|=a-ex(其中e是离心率).

    (2)M(x,y)是双曲线=1(a>0,b>0)上的一点,其焦点为F1(-c,0),F2(c,0),e为双曲线的离心率.

    M(x,y)在右支上,|PF1|=ex+a,|PF2|=ex-a;

    M(x,y)在左支上,|PF1|=-(ex+a),|PF2|=-(ex-a).

    (3)已知抛物线y2=2px(p>0),C(x1,y1),D(x2,y2)为抛物线上的点,F为焦点.

    焦半径|CF|=x1+;

    过焦点的弦长|CD|=x1+x2+p;

    x1x2=,y1y2=-p2.

    4.椭圆与双曲线中点弦斜率公式及其推论

    (1)M(x,y)是椭圆=1(a>b>0)AB(AB不平行于y)的中点,则有kAB·kOM=-;

    (2)M(x,y)是双曲线=1(a>0,b>0)AB(AB不平行于y)的中点,则有kAB·kOM=.

    5.过圆及圆锥曲线上一点的切线方程

    (1)过圆x2+y2=r2上一点M(x0,y0)的切线方程为x0x+y0y=r2;

    (2)过圆(x-a)2+(y-b)2=r2上一点M(x0,y0)的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2;

    (3)过曲线C:Ax2+By2+Dx+Ey+F=0上的一点P(x0,y0)的切线方程为Ax0x+By0y+D·+E·+F=0.

    考向训练限时通关

     

    考向一

    圆锥曲线中的面积问题

     

     

    1.(2020全国,11)F1,F2是双曲线C:x2-=1的两个焦点,O为坐标原点,PC上且|OP|=2,PF1F2的面积为(  )

                       

    A. B.3 C. D.2

    2.(2020全国,8)O为坐标原点,直线x=a与双曲线C:=1(a>0,b>0)的两条渐近线分别交于D,E两点.ODE的面积为8,C的焦距的最小值为              (  )

    A.4 B.8 C.16 D.32

    3.(2020全国,11)设双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为.PC上一点,F1PF2P.PF1F2的面积为4,a=(  )

    A.1 B.2 C.4 D.8

    4.(2020山东济宁一模,5)双曲线C:=1的右焦点为F,PC的一条渐近线上,O为坐标原点.|PO|=|PF|,PFO的面积为(  )

    A. B. C.2 D.3

    5.(2020山东烟台一模,7)P为直线3x-4y+4=0上的动点,PA,PB为圆C:(x-2)2+y2=1的两条切线,A,B为切点,则四边形APBC面积的最小值为(  )

    A. B.2 C. D.2

     

    考向二

    圆锥曲线中的弦长、线段长(比值)问题

     

     

    6.(2020山东,13)斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,|AB|=     . 

    7.(2020河南广东等省4月联考,5)已知抛物线y2=4x的焦点为F,过点F和抛物线上一点M(3,2)的直线l交抛物线于另一点N,|NF||NM|等于(  )

    A.12 B.13 

    C.14 D.1

    8.(2020山东济南一模,6)已知抛物线y2=4x的焦点为F,直线lF且与抛物线交于A,B两点,A作抛物线准线的垂线,垂足为M,MAF的角平分线与抛物线的准线交于点P,线段AB的中点为Q.|AB|=8,|PQ|=              (  )

    A.2 B.4 C.6 D.8

    9.(2020山东泰安一模,8)抛物线y2=2px(p>0)的焦点为F,准线为l,A,B是抛物线上的两个动点,且满足AFB=,设线段AB的中点Ml上的投影为N,的最大值是(  )

    A. B. C. D.

    10.

    (2020山东潍坊一模,8)如图,已知抛物线C:y2=2px(p>0)的焦点为F,P(x0,2是抛物线C上一点.P为圆心的圆与线段PF相交于点Q,与过焦点F且垂直于对称轴的直线交于点A,B,|AB|=|PQ|,直线PF与抛物线C的另一交点为M,|PF|=|PQ|,=(  )

    A.1 B. C.2 D.

     

    考向三

    圆锥曲线的小综合问题

     

     

    11.(多选)(2020山东,9)已知曲线C:mx2+ny2=1.(  )

    A.m>n>0,C是椭圆,其焦点在y轴上

    B.m=n>0,C是圆,其半径为

    C.mn<0,C是双曲线,其渐近线方程为y=±x

    D.m=0,n>0,C是两条直线

    12.(2020上海闵行模拟,15)已知抛物线的方程为y2=4x,过其焦点F的直线交此抛物线于M,N两点,y轴于点E,=λ1=λ2,λ1+λ2=(  )

    A.-2 B.- C.1 D.-1

    13.(多选)(2020山东聊城一模,10)若双曲线C:=1(a>0,b>0)的实轴长为6,焦距为10,右焦点为F,则下列结论正确的是(  )

    A.C的渐近线上的点到点F距离的最小值为4

    B.C的离心率为

    C.C上的点到点F距离的最小值为2

    D.F的最短的弦长为

    14.(多选)(2020山东烟台一模,10)已知P是双曲线C:=1上任一点,A,B是双曲线上关于坐标原点对称的两点,设直线PA,PB的斜率分别为k1,k2(k1k20),|k1|+|k2|t恒成立,且实数t的最大值为,则下列说法正确的是(  )

    A.双曲线的方程为-y2=1

    B.双曲线的离心率为2

    C.函数y=loga(x-1)(a>0,a1)的图象恒过C的一个焦点

    D.直线2x-3y=0C有两个交点

     

     

     

     

     

     

     

     

     

     

    7.3 直线、圆、圆锥曲线小综合题专项练

    考向训练·限时通关

    1.B 解析由题意知a=1,b=,c=2.不妨设F1,F2分别为双曲线C的左、右焦点,F1(-2,0),F2(2,0).

    因为|OP|=2,所以点P在以O为圆心,F1F2为直径的圆上,PF1PF2,|PF1|2+|PF2|2=(2c)2=16.

    由双曲线的定义可知||PF1|-|PF2||=2a=2,所以|PF1|2+|PF2|2-2|PF1|·|PF2|=4,所以|PF1|·|PF2|=6,所以PF1F2的面积为|PF1|·|PF2|=3.

    2.B 解析由题意可知,双曲线的渐近线方程为y=±x.

    因为直线x=a与双曲线的渐近线分别交于D,E两点,所以不妨令D(a,-b),E(a,b),所以|DE|=2b.所以SODE=2b·a=ab=8.所以c2=a2+b22ab=16,当且仅当a=b=2时取等号.所以c4,所以2c8.所以双曲线C的焦距的最小值为8.故选B.

    3.A 解析不妨设点P在第一象限,|PF1|=m,|PF2|=n,m>n,依题意得,解得a=1.

    4.A 解析双曲线C:=1的右焦点为F(,0),渐近线方程为y=±x,P(x,y)在第一象限,|PO|=|PF|,P在直线y=x,可得,解得x=,y=,P所以PFO的面积为

    故选A.

    5.

     

    A 解析S四边形APBC=2SPBC=2BC·PB=BC,,

    圆心(2,0)到直线3x-4y+4=0的距离d==2,所以PC的最小值是d=2,所以S四边形APBC故选A.

    6.

     

     解析如图所示,直线与抛物线交于A,B两点,A(x1,y1),B(x2,y2),F(1,0),准线方程为x=-1,AA',BB'垂直于准线,交准线于点A',B',由抛物线的定义知|AA'|=|AF|,|BB'|=|BF|.

    |AB|=|AF|+|BF|=|AA'|+|BB'|=x1++x2+=x1+x2+p.

    3x2-10x+3=0,x1+x2=,|AB|=+2=

    7.C 解析F(1,0),M(3,2),直线MF的方程是y=(x-1).解得x1=3,x2=

    故选C.

    8.B 解析由题意,直线AB的斜率必定存在.抛物线y2=4x的焦点为F(1,0),

     

    画出图形,可知PFAB,AM=AF,AB:y=k(x-1)与抛物线方程联立,可得k2x2-(2k2+4)x+k2=0,所以x1+x2=,x1x2=1,线段AB的中点为Q.|AB|=8,x1+x2+p=8,+2=8,解得k=±1,不妨取k=1.中点Q的横坐标为=3,Q(3,2),直线PF的斜率为-1,过点F(1,0),则其方程为y=-x+1x=-1联立解得P(-1,2),

    所以PQ==4.故选B.

    9.C 解析如图,BPl,AQl,垂足分别为P,Q.连接AF,BF,|AF|=a,|BF|=b.

     

    由抛物线定义,|AF|=|AQ|,|BF|=|BP|.在梯形ABPQ,2|MN|=|AQ|+|BP|=a+b,|MN|=

    由余弦定理,|AB|2=a2+b2.

    2abcos120°=a2+b2+ab,配方,|AB|2=(a+b)2-ab.ab,当且仅当a=b,等号成立.(a+b)2-ab(a+b)2-(a+b)2=(a+b)2,得到|AB|(a+b).所以,的最大值为故选C.

    10.B 解析设圆的半径为r,|AB|=|PQ|=|PB|=|PA|=r,PAB为正三角形,x0=,由抛物线的定义可知,|PF|=x0+,

    |PF|=|PQ|,r,化简得:

    P,F,

    直线PF的方程为y=,

    联立消去y可得

    x2-x+=0,

    由韦达定理可知,

    x0xM=,xM=

    由抛物线的定义可知,|FM|=xM+,故选B.

    11.ACD 解析mx2+ny2=1,=1.m>n>0,>0,C是焦点在y轴上的椭圆,A正确;m=n>0,x2+y2=,C是圆,r=,B错误;mx2+ny2=1,=1,mn<0,异号,C是双曲线,mx2+ny2=0,可得y2=-x2,y=±x,C正确;m=0,n>0,ny2=1,y2=,y=±,表示两条直线,D正确,故选ACD.

    12.D 解析根据题意直线MN存在斜率,易知F(1,0).设直线MN的方程为

    y=k(x-1),M(x1,y1),N(x2,y2),

    所以E(0,-k),联立整理可得

    k2x2-(2k2+4)x+k2=0,x1+x2=,x1x2=1,因为=λ1=λ2,(x1,y1+k)=λ1(1-x1,-y1),(x2,y2+k)=λ2(1-x2,-y2)

    所以λ1(1-x1)=x1,λ2(1-x2)=x2,即有λ1=,λ2=

    所以λ1+λ2=

    ==-1.

    13.AC 解析由题意可得2a=6,2c=10,所以a=3,c=5,b==4,右焦点F(5,0),渐近线的方程为4x-3y=0,所以C的渐近线上的点到点F距离的最小值为点F到渐近线的距离,b=4,所以选项A正确;离心率e=,所以选项B不正确;双曲线上的点为顶点时到相应焦点的距离最小,5-3=2,所以选项C正确;若过点F的直线与双曲线的右支相交于两点,则当这条直线垂直于x轴时,弦长最短,;若过点F的直线与双曲线的左、右两支相交于两点,则当这条直线与x轴重合时,弦长最短,2a=6.

    由于6<,所以最短的弦长为6,故选项D不正确.故选AC.

    14.AC 解析A(x0,y0),B(-x0,-y0),P(x,y),=1,=1.两式相减得:

    ,

    ,

    |k1|+|k2|=+=+2,

    又因为t的最大值为,所以2,所以m=1.故双曲线的方程为-y2=1.故选项A正确;双曲线的离心率e=,故选项B错误;该双曲线的焦点为(±2,0),函数y=loga(x-1)的图象恒过点(2,0),故选项C正确;又双曲线的渐近线为y=±x,直线2x-3y=0的斜率,且该直线过原点,所以直线与双曲线没有交点,故选项D错误.故选AC.

     

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map