|学案下载
终身会员
搜索
    上传资料 赚现金
    初中数学九年级竞赛讲义:第20讲-直线与圆
    立即下载
    加入资料篮
    初中数学九年级竞赛讲义:第20讲-直线与圆01
    初中数学九年级竞赛讲义:第20讲-直线与圆02
    初中数学九年级竞赛讲义:第20讲-直线与圆03
    还剩6页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学九年级竞赛讲义:第20讲-直线与圆

    展开

    第二十讲   直线与圆

        直线与圆的位置有相交、相切、相离三种情形,既可从直线与圆交点的个数来判定,也可以从圆心到直线的距离与圆的半径的大小比较来考察.

    讨论直线与圆的位置关系的重点是直线与圆相切,直线与圆相切涉及切线的性质和判定、切线长定理、弦切角的概念和性质、切割线定理等丰富的知识,这些丰富的知识对应着以下基本图形、基本结论:

    注: 点与圆的位置关系和直线与圆的位置关系的确定有共同的精确判定方法,即量化的方法(距离与半径的比较),我们称由数定形,勾股定理的逆定理也具有这一特点.

    【例题求解】

    【例1】 如图,AB是半圆O的直径,CBOBCDOD,交BA的延长线于E,若EA=1ED=2,则BC的长为         

    思路点拨  C点看,可用切线长定理,从E点看,可用切割线定理,而连OD,则ODEC,又有相似三角形,先求出O的半径.

     

     

     

     

     

     

    注:连结圆心与切点是一条常用的辅助线,利用切线的性质可构造出直角三角形,在圆的证明与计算中有广泛的应用. 

    【例2】 如图,ABACO相切于BCA=50°,点P是圆上异于BC的一个动点,则BPC的度数是(    )

        A65°    B115°    C60°115°    D130°50°

                                                             (山西省中考题)

    思路点拨 

     

     

     

     

     

     

    【例3  如图,以等腰ABC的一腰AB为直径的OBCD,过DDEACE,可得结论:DEO的切线.

    问:(1)若点OAB上向点B移动,以O为圆心,OB为半径的圆的交BCDDEAC的条件不变,那么上述结论是否还成立?请说明理由;

        (2)如果AB=AC=5cmsinA=,那么圆心OAB的什么位置时,OAC相切?    (2001年黑龙江省中考题)

    思路点拨  (1)是结论探索题,(2)是条件探索题,从切线的判定方法和性质入手,分别画图,方能求解.

     

     

     

     

     

     

     

     

    【例4  如图,已知RtABC中,AC=5BC=12ACB=90°PAB边上的动点(与点AB不重合)QBC边上的动点(与点BC不重合)

        (1)PQAC,且QBC的中点时,求线段PC的长;

        (2)PQAC不平行时,CPQ可能为直角三角形吗?若有可能,求出线段CQ的长的取值范围;若不可能,请说明理由.                    (广州市中考题)

    思路点拨  对于(2),易发现只有点P能作为直角顶点,建立一个研究的模型——CQ为直径的圆与线段AB的交点就是符合要求的点P,从直线与圆相切特殊位置入手,以此确定CQ的取值范围.

     

     

     

     

     

    注:判定一直线为圆的切线是平面几何中一种常见问题,判定的基本方法有:

        (1)从直线与圆交点个数入手;

        (2)利用角证明,即证明半径和直线垂直;

        (3)运用线段证明,即证明圆心到直线的距离等于半径.

    一个圆的问题,从不同的条件出发,可有不同的添辅助线方式,进而可得不同的证法,对于分层次设问的问题,需整体考虑;  

    【例5】如图,在正方形ABCD中,AB=1是以点B为圆心,AB长为半径的圆的一段弧,点E是边AD上的任意一点(点E与点AD不重合),过E所在圆的切线,交边DC于点FG为切点.

    1)当DEF=45°时,求证点G为线段EF的中点;

    2)设AE=xFC=y,求y关于x的函数解析式,并写出函数的定义域;

    3)将DEF沿直线EF翻折后得D1EF,如图,当EF=时,讨论AD1DED1F是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由.

                                                        

     

     

     

    思路点拨  图中有多条B的切线,由切线长定理可得多对等长线段,这是解(1)(2)问的基础,对于(3),由(2)求出的值,确定E点位置,这是解题的关键.

     

     

     

     

     

     

    注:本例将几何图形置于直角坐标系中,综合了圆的有关性质、相似三角形的判定与性质、切线的判定与性质、等边三角形的判定与性质等丰富的知识,并结合了待定系数法、数形互

    助等思想方法,具有较强的选拔功能.

     

    学力训练

    1.如图,ABO的直径,P点在AB延长线上,PMOM点,若OA=FM=,那么PMB的周长为                     

    2PAPBOABAPB=78°,点CO上异于AB的任意一点,则

    ACB=         

    3.如图,EBECO的两条切线,BC是切点,ADO上两点,如果F=46°DCF=32°,则A的度数是                        

     

     

     

     

     

     

     

    4.如图,以ABC的边AB为直径作OBCD,过点DO的切线交ACE,要使DEAC,则ABC的边必须满足的条件是            

                                                         

    5表示直线,给出下列四个论断:O于点AO于点BABO的直径.若以其中三个论断作为条件,余下的一个作为结论,可以构造出一些命题,在这些命题中,正确命题的个数为(    )

         1    B2      C3    D4

                                                    

    6.如图,圆心O在边长为的正方形ABCD的对角线BD上,OB点且与ADDC边均相切,则O的半径是(      )

        A   B     C      D

                                                      

    7.直角梯形ABCD中,ADBCB=90°AD+BC<DC,若腰DC上有一点P, 使APBP,则这样的点(    )

        A.不存在       B.只有一个    C.只有两个      D.有无数个

                                                        

    8.如图,圆内接ABC的外角ACH的平分线与圆交于D点,DPACPDHBHH,下列结论:CH=CPA D=DBAPBHDH为圆的切线,其中一定成立的是(    )

        A①②④    B①③④    C②③④    D①②③

                                                           

     

     

     

     

     

     

     

    9.如图,OABC的外接圆,已知ACB=45°ABC=120°O的半径为1

    (1)求弦ACAB的长;

    (2)PCB的延长线上一点,试确定P点的位置,使PAO相切,并证明你的结论.

    10.如图,ABO的直径,点PBA的延长线上,弦CDABE,且PC2=PE·PO

        (1)求证:PCO的切线; 

        (2)OEEA=12,且PA6,求O的半径;

        (3)sinPCA的值.                               

    11(1)如图a,已知直线AB过圆心O,交OAB,直线AFOF(不与B重合),直线OCD,交ABE且与AF垂直,垂足为G,连ACAD,求证:①∠BAD=CAGAC·AD=AE·AF

    (2)在问题(1)中,当直线向上平行移动与O相切时,其他条件不变.

    请你在图b中画出变化后的图形,并对照图a标记字母;

    问题(1)中的两个结论是否成立?如果成立,请给出证明;如不成立,请说明理由.

     

     

     

     

     

     

     

     

    12.如图,在RtABC中,A=90°O分别与ABAC相切于点EF,圆心OBC上,若AB=aAC=b,则O的半径等于       

    13.如图,AB是半圆O的直径,点M是半径OA的中点,点P在线段AM上运动(不与点M重合),点Q在半圆O上运动,且总保持PQ=PO,过点QO的切线交BA的延长线于点C

     (1)QPA=60°时,请你对QCP的形状做出猜想,并给予证明.

     (2)QPAB时,QCP的形状是        三角形.

     (3)(1)(2)得出的结论,请进一步猜想当点P在线段AM上运动到任何位置时,QCP一定是      三角形.                                

     

     

     

     

     

     

     

     

    14.如图,已知ABO的直径,CBOB CDOD,交BA的延长线于E,若AB=3ED=2,则BC的长为(     )

        A2     B3     C35     D4   

    15.如图,PAPBO的两条切线,AB切点,直线OPOCD,交ABEAFO的直径,下列结论:(1)APB=AOP(2)BC=DF(3)PC·PD=PE·PO,其中正确结论的个数有(    )

    A3     B2    C1    D0

     

     

     

     

     

     

     

    16.如图,已知ABC,过点A作外接圆的切线交BC的延长线于点P,点DAC上,且,延长PDAB于点E,则的值为(       )

      A    B     C    D

                                                             

    17.如图,已知AB为半圆O的直径,AP为过点A的半圆的切线. 在AB上任取一点C(CAB不重合),过点C作半圆的切线CDAP于点D;过点CCEAB,垂足为E.连结BD,交CE于点F

    (1)当点CAB的中点时(如图1),求证:CFEF

    (2)当点C不是AB的中点时(如图2),试判断CFEF的相等关系是否保持不变,并证明你的结论.                                                

     

     

     

     

     

     

    18.如图,ABC中,C=90°AC=6BC=3,点DAC边上,以D为圆心的DAB切于点E

    (1)求证:ADE∽△ABC

    (2)DBC交于点F,当CF=2时,求CD的长;

    (3)CD=,试给出一个值,使DBC没有公共点,并说明你给出的值符合的要求.

     

     

     

     

     

     

     

     

    19.如图,PAPBO切于AB两点,PC是任意一条割线,且交O于点EC,交AB于点D.求证:

     

    20.如图,Oˊx轴交于AB两点,与y轴交于CD两点,圆心Oˊ的坐标是(1,一1),半径是

    (1)ABCD四点的坐标;

    (2)求经过点D的切线的解析式;

    (3)问过点A的切线与过点D的切线是否垂直?若垂直,请写出

    证明过程;若不垂直,试说明理由.

    21.当你进入博物馆的展览厅时,你知道站在何处观赏最理想? 如图,设墙壁上的展品最高处点P距离地面a米,最低处点Q距离地面b米,观赏者的眼睛点E距离地面m米,当过    PQE三点的圆与过点E的水平线相切于点E时,视角PEQ最大,站在此处观赏最理想.

     (1)设点E到墙壁的距离为x米,求abmx的关系式;

     (2)a=2.5b=2m=1.6时,求:

     (a)E和墙壁距离x米;(b)最大视角PER的度数(精确到1)

                                                            

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    参考答案

     

     

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map