|课件下载
搜索
    上传资料 赚现金
    八年级下数学课件《菱形的判定》课件_冀教版
    立即下载
    加入资料篮
    八年级下数学课件《菱形的判定》课件_冀教版01
    八年级下数学课件《菱形的判定》课件_冀教版02
    八年级下数学课件《菱形的判定》课件_冀教版03
    八年级下数学课件《菱形的判定》课件_冀教版04
    八年级下数学课件《菱形的判定》课件_冀教版05
    八年级下数学课件《菱形的判定》课件_冀教版06
    八年级下数学课件《菱形的判定》课件_冀教版07
    八年级下数学课件《菱形的判定》课件_冀教版08
    还剩33页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册22.5 菱形获奖课件ppt

    展开
    这是一份初中数学冀教版八年级下册22.5 菱形获奖课件ppt,共41页。PPT课件主要包含了课堂讲解,课时流程,逐点导讲练,课堂小结,作业提升,旧知回顾,平行四边形的性质,四条边都相等,四个角都是直角,探究新知等内容,欢迎下载使用。

    由对角线的位置关系判定菱形由边的关系判定菱形
    想一想:1.菱形、矩形的定义?2.它们分别比平行四边形多了哪些性质?3.怎样判定一个四边形是矩形?
    有一角是直角的平行四边形叫做矩形.
    有一组邻边相等的平行四边形叫做菱形.
    互相垂直且平分每一组对角
    有一角是直角的平行四边形
    对角线相等的平行四边形
    三个角都是直角的四边形
    同学们想一想,我们在学习平行四边形的判定和矩形的判定时,我们是如何到的它们的判定方法呢?那么类比着它们,菱形的判定方法是什么?
    由对角线的位置关系判定菱形
    1. 用一长一短两根细木条,在它们的中点处固定一个小 钉子,做成一个可转动的十字架,四周围上一根橡 皮筋,做成一个四边形.2. 任意转动木条,这个四边形 总有什么特征?你能证明你发现的结论吗?继续转 动木条,观察什么时候橡皮筋周围的四边形变成菱 形?你能证明你的猜想吗?
    猜想:对角线互相垂直的平行四边形是菱形.3. 这个命题的前提是什么?结论是什么?用几何语言表示命题如下:已知:在□ABCD中,对角线AC⊥BD,求证:□ABCD是菱形.分析:我们可根据菱形的定义来证明这个平行四边形是菱形,由平行四边形的性质得到BO=DO,由∠AOB=∠AOD=90º及AO=AO,得△AOB≌△AOD,可得到AB=AD (或根据线段垂直平分线性质定理,得到AB=AD) ,最后证得□ABCD是菱形.
    对角线互相垂直的平行四边形是菱形.提示:此方法包括两个条件——(1)是一个平行四边形;(2)两条对角线互相垂直.对角线互相垂直且平分的四边形是菱形.
    例1 如图,在平行四边形ABCD中,对角线AC,BD相交于点O,过点O作直线EF⊥BD,分别交AD,BC于点E和点F,连接BE,DF. 求证:四边形BEDF是菱形.
    若要证明四边形BEDF是菱形,需要先证明四边形BEDF是平行四边形,而由题意易知DE∥BF,只需要证明DE=BF,即可判定四边形BEDF是平行四边形,证明DE=BF可通过证明△OED≌△OFB来实现.
    ∵四边形ABCD是平行四边形,∴OB=OD,AD∥BC.∴∠EDO=∠FBO,∠OED=∠OFB.∴△OED≌△OFB. ∴DE=BF.又∵DE∥BF,∴四边形BEDF是平行四边形.∵EF⊥BD,∴四边形BEDF是菱形.
    证明一个四边形是菱形时,若已知要证的四边形的对角线互相垂直,则要考虑证明这个四边形是平行四边形.
    已知:如图,在▱ABCD中,O为对角线AC的中点,过点O作AC的垂线与边AD,BC分别交于点E,F. 求证:四边形AFCE是菱形.
    ∵O为AC的中点,EF⊥AC,∴AE=EC,AF=FC,在▱ABCD中,∵AD∥BC,∴∠AEO=∠CFO,∠EAO=∠OCF,在△AEO与△CFO中,∴△AEO≌△CFO,∴AE=CF.∴AE=EC=CF=FA.∴四边形AFCE是菱形.
    【中考·海南】如图,四边形 ABCD 是轴对称图形,且直线 AC 是对称轴,BD与AC交于点O,AB∥CD,则下列结论:①AC⊥BD;②AD∥ BC;③四边形 ABCD 是菱形;④△ABD≌△CDB.其中正确的是____________(只填写序号).
    【中考·泰安】如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB; ④PF=PC,其中正确结论的个数为(  )A.1 B.2 C.3 D.4
    如图,画两条等长的线段AB,AD.分别以点B, D为圆心,AB为半径画弧,两弧相交于点C连接BC,CD.得到四边形ABCD.四边形ABCD是菱形吗?
    事实上,我们有:四条边相等的四边形是菱形.现在,我们来证明这个结论.已知:如图,在四边形ABCD中,AB=BC=CD=DA.求证:四边形是菱形.证明:∵AB=CD.且BC=AD,∴四边形ABCD是平行四边形.又∵AB=AD.∴四边形ABCD是菱形.
    四条边相等的四边形是菱形.
    例2 已知:如图,在△ABC中,AD是∠BAC的平分线,DE∥AC,交AB于点E,DF∥AB,交AC于点F.求证:四边形AEDF是菱形.
    ∵ DE∥AC, DF∥AB,∴四边形AEDF是平行四边形.∴∠1=∠3.又∵∠1=∠2,∴∠2=∠3.∴AE=DE.∴四边形AEDF是菱形.
    能证明四边形是平行四边形时,可以先证明四边形是平行四边形,然后证明有一组邻边相等来证明四边形是菱形 .
    1 如图,在△ABC中,AB=AC,画出点A关于BC的对称点A'.请用两种不同的方法证明四边形ABA'C是菱形.
    如图,E是菱形ABCD的边AD的中点,EF⊥ BD于点H,交BC延长线于点F,交DC于点G.求证:DC与EF互相平分.
    连接AC,则AC⊥BD,又因为EF⊥BD,∴AC∥EF.∵E是AD的中点,∴G是DC中点.易得△DEG≌△CFG,∴EG=FG,∴DC与EF互相平分.
    已知:如图,四边形ABCD是菱形,两条对角线交于点O,DE为∠ADB的平分线,交AC于点E,DF为∠CDB的平分线,交AC于点F,连接BE,BF. 求证:四边形DEBF是菱形.
    ∵四边形ABCD是菱形,AC、BD是其两条对角线,∴EF垂直平分DB,∴ED=EB,DF=BF.∵DE、DF分别平分∠ADB,∠CDB,∠ADB=∠CDB,∴∠ADE=∠CDF.在△ADE和△CDF中,∴△ADE≌△CDF,∴DE=DF,∴DE=DF=BE=BF.∴四边形DEBF是菱形.
    例3 如图,在四边形ABCD中,AD∥BC,AB=CD, 点E,F,G,H分别是AD,BD,BC,AC的中 点.试说明:四边形EFGH是菱形.
    由于点E,F,G,H分别是AD,BD,BC,AC的中点,可知EH,HG,GF,FE分别是△ACD,△ABC,△BCD,△ABD的中位线,又∵AB=CD,∴EH=HG=GF=FE,根据“四条边相等的四边形是菱形”可得四边形EFGH是菱形.
    ∵点E,H分别为AD,AC的中点,∴EH为△ACD的中位线,∴EH= CD.同理可证:EF= AB,FG= CD,HG= AB.∵AB=CD,∴EH=EF=FG=HG,∴四边形EFGH是菱形.
    有较多线段相等的条件时,我们可考虑通过证明四条边相等来证明这个四边形是菱形.注意:本例也可以通过先证四边形EFGH是平行四边形,再证一组邻边相等,只不过步骤复杂一点,读者不妨试一试.
    如图在▱ABCD中,∠D=60°,以顶点A为圆心,AB为半径画弧,交BC于点E,交AD于点F.请你指出图中的等腰三角形、平行四边形和菱形.
    △ABE,△AEF是等腰三角形.四边形ABCD、四边形ABEF、四边形CDFE是平行四边形,四边形ABEF是菱形.
    如图,在菱形ABCD中,∠BAD=60°,M为AB中点,P为对角线AC上的一个动点,PM+PB的最小值是3. 求AB的长.
    作点M关于AC对称的点M′,则M′在边AD上.且M′为AD的中点,连接BM′,易得BM′的长为PM+PB的最小值,∴BM′=3. 连接BD,∵AB=AD,∠BAD=60°,∴△ABD为等边三角形.∴∠ABM′=30°,∠AM′B=90°,∴AM′= AB,AB2-AM′2=BM′2=9,∴AB=2 .
    如图,绿丝带下部重叠部分是什么图形?请说明理由.
    解:菱形. 理由略.
    如图,四边形ABCD的对角线AC,BD互相垂直,则下列条件能判定四边形ABCD为菱形的是(  )A.BA=BC B.AC,BD互相平分C.AC=BD D.AB∥CD
    【中考·河南】如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有(  )A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2
    如图,将▱ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成立的是(  )A.AF=EF B.AB=EF C.AE=AF D.AF=BE
    如图,在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是(  )A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形
    如图,四边形ABCD的四边相等,且面积为120 cm2,对角线AC =24 cm,则四边形ABCD的周长为 (  )A.52 cm  B.40 cm C.39 cm D.26 cm
    如图,在△ABC中,AD是角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F.如果AE=4 cm,那么四边形AEDF的周长为(  )A.12 cm B.16 cm C.20 cm D.22 cm
    如图,分别以Rt△ABC的斜边AB和直角边AC为边向△ABC外作等边三角形ABD和等边三角形ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠BAC=30°.给出以下结论:①EF⊥AC;   ②四边形ADFE为菱形;③AD=4AG; ④FH= BD.其中正确的结论是(  )A.①②③  B.①②④  C.①③④  D.②③④
    下列命题:①四边都相等的四边形是菱形;②两组邻边分别相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形;④对角线相等的四边形是菱形;⑤一条对角线平分一组对角的平行四边形是菱形.其中正确的是__________(填序号).
    易错点:臆造菱形的判定方法导致出错
    相关课件

    数学人教版18.2.2 菱形优秀课件ppt: 这是一份数学人教版18.2.2 菱形优秀课件ppt,共24页。PPT课件主要包含了你能证明这一猜想吗,菱形的判定定理,即AC⊥BD,∴ACBD,请补充完整的证明过程,cm2等内容,欢迎下载使用。

    冀教版22.5 菱形图文ppt课件: 这是一份冀教版22.5 菱形图文ppt课件,共14页。PPT课件主要包含了类比猜想,活动与实践,猜想与验证,归纳与总结,理解与辨析,理解与应用,拓展与提升,问题回归等内容,欢迎下载使用。

    数学八年级下册22.5 菱形习题ppt课件: 这是一份数学八年级下册22.5 菱形习题ppt课件,共29页。PPT课件主要包含了答案显示,见习题等内容,欢迎下载使用。

    • 精品推荐
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map