精品解析:黑龙江省龙东地区2020年中考数学试题(原卷版)
展开黑龙江省龙东地区2020年初中毕业学业统一考试数学试题
考生注意:
1.考试时间120分钟
2.全卷共三道大题,总分120分
一、选择题(每题3分,满分30分)
1.下列各运算中,计算正确的是( )
A. B.
C. D.
2.下列图标中是中心对称图形的是( )
A. B. C. D.
3.如图,由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则所需的小正方体的个数最多是( )
A. B. C. D.
4.一组从小到大排列数据:,3,4,4,6(为正整数),唯一的众数是4,则该组数据的平均数是( )
A. 3.6或4.2 B. 3.6或3.8 C. 3.8或4.2 D. 3.8或4.2
5.已知关于的一元二次方程有两个实数根,,则实数的取值范围是( )
A. B. C. D. 且
6.如图,菱形的两个顶点,在反比例函数的图象上,对角线,的交点恰好是坐标原点,已知,,则的值是( )
A. B. C. D.
7.已知关于分式方程的解为正数,则的取值范围是( )
A. B. 且
C. D. 且
8.如图,菱形的对角线、相交于点,过点作于点,连接,若,,则的长为( )
A. B. C. D.
9.在抗击疫情网络知识竞赛中,为奖励成绩突出的学生,学校计划用元钱购买、、三种奖品,种每个元,种每个元,种每个元,在种奖品不超过两个且钱全部用完的情况下,有多少种购买方案( )
A. 种 B. 种 C. 种 D. 种
10.如图,正方形边长为,点在边上运动(不与点,重合),,点在射线上,且,与相交于点,连接、、.则下列结论:①;②的周长为;③;④的面积的最大值是;⑤当时,是线段的中点.其中正确的结论是( )
A. ①②③ B. ②④⑤ C. ①③④ D. ①④⑤
二、填空题(每题3分,满分30分)
11.5G信号的传播速度为300000000m/s,将300000000用科学记数法表示为__________.
12.函数中,自变量的取值范围是 .
13.如图,和中,,在不添加任何辅助线的情况下,请你添加一个条件___________,使和全等.
14.一个盒子中装有标号为、、、、的五个小球,这些球除了标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于的概率为______.
15.若关于的一元一次不等式组有个整数解,则的取值范围是______.
16.如图,是的外接圆的直径,若,则______.
17.小明在手工制作课上,用面积为,半径为的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为______.
18.如图,在边长为正方形中将沿射线平移,得到,连接、.求的最小值为______.
19.在矩形中,,,点在边上,且,连接,将沿折叠.若点的对应点落在矩形的边上,则折痕的长为______.
20.如图,直线的解析式为与轴交于点,与轴交于点,以为边作正方形,点坐标为.过点作交于点,交轴于点,过点作轴的垂线交于点以为边作正方形,点的坐标为.过点作交于,交轴于点,过点作轴的垂线交于点,以为边作正方形,,则点的坐标______.
三、解答题(满分60分)
21.先化简,再求值:,其中.
22.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,的三个顶点、、均在格点上
(1)将向左平移个单位得到,并写出点的坐标;
(2)画出绕点顺时针旋转后得到的,并写出点的坐标;
(3)在(2)的条件下,求在旋转过程中扫过的面积(结果保留).
23.如图,已知二次函数的图象经过点,,与轴交于点.
(1)求抛物线的解析式;
(2)抛物线上是否存在点,使,若存在请直接写出点的坐标.若不存在,请说明理由.
24.为了提高学生体质,战胜疫情,某中学组织全校学生宅家一分钟跳绳比赛,全校跳绳平均成绩是每分钟次,某班班长统计了全班名学生一分钟跳绳成绩,列出的频数分布直方图如图所示,(每个小组包括左端点,不包括右端点).
求:(1)该班一分钟跳绳的平均次数至少是多少,是否超过全校的平均次数;
(2)该班的一个学生说:“我的跳绳成绩是我班的中位数”请你给出该生跳绳成绩的所在范围;
(3)从该班中任选一人,其跳绳次数超过全校平均数的概率是多少.
25.为抗击疫情,支持武汉,某物流公司快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离(单位:千米)与快递车所用时间(单位:时)的函数图象,已知货车比快递车早小时出发,到达武汉后用小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚小时.
(1)求的函数解析式;
(2)求快递车第二次往返过程中,与货车相遇的时间.
(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)
26.如图①,在中,,,点、分别在、边上,,连接、、,点、、分别是、、的中点,连接、、.
(1)与的数量关系是______.
(2)将绕点逆时针旋转到图②和图③的位置,判断与有怎样的数量关系?写出你的猜想,并利用图②或图③进行证明.
27.某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克元,售价每千克元;乙种蔬菜进价每千克元,售价每千克元.
(1)该超市购进甲种蔬菜千克和乙种蔬菜千克需要元;购进甲种蔬菜千克和乙种蔬菜千克需要元.求,的值.
(2)该超市决定每天购进甲、乙两种蔬菜共千克,且投入资金不少于元又不多于元,设购买甲种蔬菜千克,求有哪几种购买方案
(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出元,乙种蔬菜每千克捐出元给当地福利院,若要保证捐款后的利润率不低于,求的最大值.
28.如图,在平面直角坐标系中,矩形的边长是方程的根,连接,,并过点作,垂足为,动点从点以每秒个单位长度的速度沿方向匀速运动到点为止;点沿线段以每秒个单位长度的速度由点向点匀速运动,到点为止,点与点同时出发,设运动时间为秒
(1)线段______;
(2)连接和,求的面积与运动时间的函数关系式;
(3)在整个运动过程中,当是以为腰的等腰三角形时,直接写出点的坐标.