- 2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第04章 第4讲 第2课时 利用导数研究不等式的恒成立问题 课件 16 次下载
- 2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第04章 第4讲 第3课时 利用导数探究函数的零点问题 课件 15 次下载
- 2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第04章 第1讲 变化率与导数、导数的计算 课件 14 次下载
- 2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第04章 第3讲 导数与函数的极值、最值 课件 14 次下载
- 2021版新高考地区高考数学(人教版)大一轮复习(课件+学案)第05章 阅读与欣赏(四) 三角函数中ω值的求法 课件 13 次下载
2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第04章 第2讲 导数与函数的单调性
展开[基础题组练]
1.函数f(x)=ex-ex,x∈R的单调递增区间是( )
A.(0,+∞) B.(-∞,0)
C.(-∞,1) D.(1,+∞)
解析:选D.由题意知,f′(x)=ex-e,令f′(x)>0,解得x>1,故选D.
2.已知定义在R上的函数f(x),其导函数f′(x)的大致图象如图所示,则下列叙述正确的是( )
A.f(b)>f(c)>f(d)
B.f(b)>f(a)>f(e)
C.f(c)>f(b)>f(a)
D.f(c)>f(e)>f(d)
解析:选C.由题意得,当x∈(-∞,c)时,f′(x)>0,所以函数f(x)在(-∞,c)上是增函数,
因为a<b<c,所以f(c)>f(b)>f(a),故选C.
3.函数f(x)=的图象大致为( )
解析:选B.函数f(x)=的定义域为{x|x≠0,x∈R},当x>0时,函数f′(x)=,可得函数的极值点为:x=1,当x∈(0,1)时,函数是减函数,x>1时,函数是增函数,并且f(x)>0,选项B、D满足题意.
当x<0时,函数f(x)=<0,选项D不正确,选项B正确.
4.已知f(x)=,则( )
A.f(2)>f(e)>f(3) B.f(3)>f(e)>f(2)
C.f(3)>f(2)>f(e) D.f(e)>f(3)>f(2)
解析:选D.f(x)的定义域是(0,+∞),
f′(x)=,令f′(x)=0,得x=e.
所以当x∈(0,e)时,f′(x)>0,f(x)单调递增,当x∈(e,+∞)时,f′(x)<0,f(x)单调递减,故当x=e时,f(x)max=f(e)=,而f(2)==,f(3)==,所以f(e)>f(3)>f(2),故选D.
5.若函数f(x)=2x3-3mx2+6x在区间(1,+∞)上为增函数,则实数m的取值范围是( )
A.(-∞,1] B.(-∞,1)
C.(-∞,2] D.(-∞,2)
解析:选C.因为f′(x)=6(x2-mx+1),且函数f(x)在区间(1,+∞)上是增函数,所以f′(x)=6(x2-mx+1)≥0在(1,+∞)上恒成立,即x2-mx+1≥0在(1,+∞)上恒成立,所以m≤=x+在(1,+∞)上恒成立,即m≤(x∈(1,+∞)),因为当x∈(1,+∞)时,x+>2,所以m≤2.故选C.
6.函数f(x)=+-ln x的单调递减区间是________.
解析:因为f(x)=+-ln x,
所以函数的定义域为(0,+∞),
且f′(x)=--=,
令f′(x)<0,解得0<x<5,所以函数f(x)的单调递减区间为(0,5).
答案:(0,5)
7.已知函数f(x)=ln x+2x,若f(x2+2)<f(3x),则实数x的取值范围是________.
解析:由题可得函数f(x)的定义域为(0,+∞),f′(x)=+2xln 2,所以在定义域内f′(x)>0,函数单调递增,所以由f(x2+2)<f(3x)得x2+2<3x,所以1<x<2.
答案:(1,2)
8.已知函数y=f(x)(x∈R)的图象如图所示,则不等式xf′(x)≥0的解集为________.
解析:由f(x)图象特征可得,
f′(x)在和[2,+∞)上大于0,在上小于0,
所以xf′(x)≥0⇔或⇔0≤x≤或x≥2,
所以xf′(x)≥0的解集为∪[2,+∞).
答案:∪[2,+∞)
9.已知函数f(x)=x3+ax2-x+c,且a=f′.
(1)求a的值;
(2)求函数f(x)的单调区间.
解:(1)由f(x)=x3+ax2-x+c,
得f′(x)=3x2+2ax-1.
当x=时,得a=f′=3×+2a×-1,
解得a=-1.
(2)由(1)可知f(x)=x3-x2-x+c,
则f′(x)=3x2-2x-1=3(x-1),
令f′(x)>0,解得x>1或x<-;
令f′(x)<0,解得-<x<1.
所以f(x)的单调递增区间是和(1,+∞);
f(x)的单调递减区间是.
10.已知函数f(x)=-1(b∈R,e为自然对数的底数)在点(0,f(0))处的切线经过点(2,-2).讨论函数F(x)=f(x)+ax(a∈R)的单调性.
解:因为f(0)=b-1,
所以过点(0,b-1),(2,-2)的直线的斜率为k==-,
而f′(x)=-,由导数的几何意义可知,
f′(0)=-b=-,
所以b=1,所以f(x)=-1.
则F(x)=ax+-1,F′(x)=a-,
当a≤0时,F′(x)<0恒成立;
当a>0时,由F′(x)<0,得x<-ln a,
由F′(x)>0,得x>-ln a.
故当a≤0时,函数F(x)在R上单调递减;
当a>0时,函数F(x)在(-∞,-ln a)上单调递减,在(-ln a,+∞)上单调递增.
[综合题组练]
1.(综合型)设f(x),g(x)是定义在R上的恒大于0的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时,有( )
A.f(x)g(x)>f(b)g(b) B.f(x)g(a)>f(a)g(x)
C.f(x)g(b)>f(b)g(x) D.f(x)g(x)>f(a)g(a)
解析:选C.令F(x)=,则F′(x)=<0,所以F(x)在R上单调递减.又a<x<b,所以>>.又f(x)>0,g(x)>0,所以f(x)g(b)>f(b)g(x).
2.函数f(x)的定义域为R.f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( )
A.(-1,1) B.(-1,+∞)
C.(-∞,-1) D.(-∞,+∞)
解析:选B.由f(x)>2x+4,得f(x)-2x-4>0.设F(x)=f(x)-2x-4,则F′(x)=f′(x)-2.
因为f′(x)>2,所以F′(x)>0在R上恒成立,所以F(x)在R上单调递增,而F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x-4>0等价于F(x)>F(-1),所以x>-1,选B.
3.若函数f(x)=ax3+3x2-x恰好有三个单调区间,则实数a的取值范围是________.
解析:由题意知f′(x)=3ax2+6x-1,由函数f(x)恰好有三个单调区间,得f′(x)有两个不相等的零点,所以3ax2+6x-1=0需满足a≠0,且Δ=36+12a>0,解得a>-3,所以实数a的取值范围是(-3,0)∪(0,+∞).
答案:(-3,0)∪(0,+∞)
4.已知函数f(x)=-x2+4x-3ln x在区间[t,t+1]上不单调,则t的取值范围是________.
解析:由题意知f′(x)=-x+4-
=-,
由f′(x)=0,得函数f(x)的两个极值点为1和3,
则只要这两个极值点有一个在区间(t,t+1)内,
函数f(x)在区间[t,t+1]上就不单调,
由t<1<t+1或t<3<t+1,得0<t<1或2<t<3.
答案:(0,1)∪(2,3)
5.设函数f(x)=x3-x2+bx+c,曲线y=f(x)在点(0,f(0))处的切线方程为y=1.
(1)求b,c的值;
(2)若a>0,求函数f(x)的单调区间;
(3)设函数g(x)=f(x)+2x,且g(x)在区间(-2,-1)内存在单调递减区间,求实数a的取值范围.
解:(1)f′(x)=x2-ax+b,
由题意得即
故b=0,c=1.
(2)由(1)得,f′(x)=x2-ax=x(x-a)(a>0),
当x∈(-∞,0)时,f′(x)>0;
当x∈(0,a)时,f′(x)<0;
当x∈(a,+∞)时,f′(x)>0,
所以函数f(x)的单调递增区间为(-∞,0),(a,+∞),单调递减区间为(0,a).
(3)g′(x)=x2-ax+2,依题意,存在x∈(-2,-1),使不等式g′(x)=x2-ax+2<0成立.
则存在x∈(-2,-1)使-a>-x-成立,
即-a>.
因为x∈(-2,-1),所以-x∈(1,2),
则-x-≥2=2,
当且仅当-x=-,即x=-时等号成立,
所以-a>2,则a<-2.
所以实数a的取值范围为(-∞,-2).
6.(2020·成都七中检测)设函数f(x)=ax2-a-ln x,g(x)=-,其中a∈R,e=2.718…为自然对数的底数.
(1)讨论f(x)的单调性;
(2)证明:当x>1时,g(x)>0.
解:(1)由题意得f′(x)=2ax-=(x>0).
当a≤0时,f′(x)<0,f(x)在(0,+∞)上单调递减.
当a>0时,由f′(x)=0有x=,
当x∈时,f′(x)<0,f(x)单调递减;
当x∈时,f′(x)>0,f(x)单调递增.
(2)证明:令s(x)=ex-1-x,则s′(x)=ex-1-1.当x>1时,s′(x)>0,所以s(x)>s(1),即ex-1>x,从而g(x)=-=>0.