2020届高考数学一轮复习新课改省份专用学案:第十章第四节古典概型与几何概型
展开第四节 古典概型与几何概型
突破点一 古典概型
1.基本事件的特点
(1)任何两个基本事件都是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和.
2.古典概型
具有以下两个特点的概率模型称为古典概率模型,简称古典概型.
(1)有限性:试验中所有可能出现的基本事件只有有限个;
(2)等可能性:每个基本事件出现的可能性相等.
3.古典概型的概率公式
P(A)=.
一、判断题(对的打“√”,错的打“×”)
(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.( )
(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.( )
(3)从市场上出售的标准为500±5 g的袋装食盐中任取一袋,测其重量,属于古典概型.( )
(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为.( )
答案:(1)× (2)× (3)× (4)√
二、填空题
1.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为________.
答案:
2.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为________.
答案:
3.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为________.
答案:
[典例] (2018·天津高考)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.
(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?
(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.
①试用所给字母列举出所有可能的抽取结果;
②设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.
[解] (1)因为甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,所以应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.
(2)①从抽取的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.
②由①,不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5种.
所以事件M发生的概率P(M)=.
1.求古典概型概率的步骤
(1)判断本试验的结果是否为等可能事件,设出所求事件A;
(2)分别求出基本事件的总数n与所求事件A中所包含的基本事件个数m;
(3)利用公式P(A)=,求出事件A的概率.
2.求基本事件个数的三种方法
(1)列举法:把所有的基本事件一一列举出来,此方法适用于情况相对简单的试验题.
(2)列表法:将基本事件用表格的方式表示出来,通过表格可以弄清基本事件的总数,以及要求的事件所包含的基本事件数.
(3)树状图法:树状图法是使用树状的图形把基本事件列举出来的一种方法,树状图法便于分析基本事件间的结构关系,对于较复杂的问题,可以作为一种分析问题的主要手段.
[针对训练]
1.(2018·全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )
A. B.
C. D.
解析:选C 不超过30的所有素数为2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有C=45种情况,而和为30的有7+23,11+19,13+17这3种情况,∴所求概率为=.故选C.
2.(2019·大同一中月考)甲、乙两人玩一种游戏,在装有质地、大小完全相同,编号分别为1,2,3,4,5,6六个球的口袋中,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.
(1)求甲赢且编号和为8的事件发生的概率.
(2)这种游戏规则公平吗?试说明理由.
解:(1)设“两个编号和为8”为事件A,则事件A包括的基本事件有(2,6),(3,5),(4,4),(5,3),(6,2),共5个.又甲、乙两人取出的数字共有6×6=36个等可能的结果,
故P(A)=.
(2)这种游戏规则是公平的.
设甲赢为事件B,乙赢为事件C,由题可知甲赢即两编号和为偶数所包含的基本事件数有(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6),共18个.
所以甲赢的概率P(B)==,故乙赢的概率P(C)=1-==P(B),
所以这种游戏规则是公平的.
突破点二 几何概型
1.几何概型的定义
如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.
2.几何概型的两个基本特点
(1)无限性:在一次试验中可能出现的结果有无限多个;
(2)等可能性:每个试验结果的发生具有等可能性.
3.几何概型的概率公式
P(A)=.
一、判断题(对的打“√”,错的打“×”)
(1)在一个正方形区域内任取一点的概率是零.( )
(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( )
(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.( )
答案:(1)√ (2)√ (3)√
二、填空题
1.已知球O内切于棱长为2的正方体,若在正方体内任取一点,则这一点不在球内的概率为________.
答案:1-
2.已知四边形ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为________.
答案:1-
3.已知函数f(x)=2x(x<0),其值域为D,在区间(-1,2)上随机取一个数x,则x∈D的概率是________.
答案:
考法一 与长度、角度有关的几何概型
[例1] (1)(2019·成都毕业班摸底)在区间[-4,1]上随机地取一个实数x,若x满足|x|<a的概率为,则实数a的值为( )
A. B.1
C.2 D.3
(2)(2019·福州四校联考)如图,在圆心角为90°的扇形AOB中,以圆心O为起点在上任取一点C作射线OC,则使得∠AOC和∠BOC都不小于30°的概率是( )
A. B.
C. D.
[解析] (1)设集合A={x||x|<a}=(-a,a)(a>0),若0<a≤1,则A⊆[-4,1],由几何概型的意义,得P(A)==,解得a=2,不符合题意,若a>1,则P(A)==,解得a=3,符合题意,故选D.
(2)记事件T是“作射线OC,使得∠AOC和∠BOC都不小于30°”,如图,记的三等分点为M,N,连接OM,ON,则∠AON=∠BOM=∠MON=30°,则符合条件的射线OC应落在扇形MON中,所以P(T)===,故选A.
[答案] (1)D (2)A
[方法技巧]
1.与长度有关的几何概型
如果试验的结果构成的区域的几何度量可用长度表示,可直接用概率的计算公式求解.
2.与角度有关的几何概型
当涉及射线的转动,扇形中有关落点区域问题时,应以角的大小作为区域度量来计算概率,且不可用线段的长度代替,这是两种不同的度量手段.
考法二 与面积有关的几何概型
[例2] (1)(2019·惠州调研)我国古代数学家赵爽在《周髀算经》一书中给出了勾股定理的绝妙证明.如图是赵爽的弦图.弦图是一个以勾股形(即直角三角形)之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱(红)色及黄色,其面积称为朱实、黄实,利用2×勾×股+(股-勾)2=4×朱实+黄实=弦实=弦2,化简得:勾2+股2=弦2.设勾股形中勾股比为1∶,若向弦图内随机抛掷1 000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )
A.866 B.500
C.300 D.134
(2)(2019·齐齐哈尔八中模拟)如图,四边形ABCD为正方形,G为线段BC的中点,四边形AEFG与四边形DGHI也为正方形,连接EB,CI,则向多边形AEFGHID中投掷一点,该点落在阴影部分内的概率为( )
A. B.
C. D.
[解析] (1)设勾为a,则股为a,所以弦为2a,小正方形的边长为a-a,所以题图中大正方形的面积为4a2,小正方形的面积为(-1)2a2,所以小正方形与大正方形的面积比为=1-,所以落在黄色图形(小正方形)内的图钉数大约为× 1 000≈134.
(2)设正方形ABCD的边长为1,则可求得S总=3,S阴影=2×××1×=1,所以所求概率为P=,故选A.
[答案] (1)D (2)A
[方法技巧]
求解与面积有关的几何概型的关键点
求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.
考法三 与体积有关的几何概型
[例3] (2019·陕西部分学校摸底)在球O内任取一点P,则点P在球O的内接正四面体中的概率是( )
A. B.
C. D.
[解析] 设球O的半径为R,球O的内接正四面体的棱长为a,所以正四面体的高为a,所以R2=2+2,即a=2R,所以正四面体的棱长为,底面面积为××R=R2,高为,所以正四面体的体积为R3,又球O的体积为 R3,所以P点在球O的内接正四面体中的概率为,故选C.
[答案] C
[方法技巧]
求解与体积有关的几何概型的关键点
对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.
1.已知函数f(x)=sin x+3cos x,当x∈[0,π]时,f(x)≥ 的概率为( )
A. B.
C. D.
解析:选B f(x)=sin x+3cos x=2sin,
∵x∈[0,π],∴x+∈,令f(x)≥ ,
得sin≥,得≤x+≤,∴0≤x≤,
∴f(x)≥ 的概率为.
2.在棱长为2的正方体ABCDA1B1C1D1中,点O为底面ABCD的中心,在正方体ABCDA1B1C1D1内随机取一点P,则点P到点O的距离大于1的概率为________.
解析:正方体的体积为2×2×2=8,以O为球心,1为半径且在正方体内部的半球的体积为×πr3=×π×13=π,则点P到点O的距离大于1的概率为:1-=1-.
答案:1-
3.某人随机地在如图所示的正三角形及其外接圆区域内部投针(不包括三角形边界及圆的外界),则针扎到阴影区域(不包括边界)的概率为________.
解析:设正三角形的边长为a,圆的半径为R,则正三角形的面积为a2.
由正弦定理得2R=,即R=a.所以圆的面积S=πR2=πa2.
由几何概型的概率计算公式得概率P==.
答案: