|学案下载
终身会员
搜索
    上传资料 赚现金
    2021版江苏高考数学一轮复习讲义:第8章第6节 双曲线
    立即下载
    加入资料篮
    2021版江苏高考数学一轮复习讲义:第8章第6节 双曲线01
    2021版江苏高考数学一轮复习讲义:第8章第6节 双曲线02
    2021版江苏高考数学一轮复习讲义:第8章第6节 双曲线03
    还剩11页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021版江苏高考数学一轮复习讲义:第8章第6节 双曲线

    展开
    第六节 双曲线
    [最新考纲] 1.了解双曲线的实际背景,了解双曲线在刻画现实世界和解决实际问题中的作用.2.了解双曲线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线).3.理解数形结合思想.4.了解双曲线的简单应用.


    1.双曲线的定义
    (1)平面内与两个定点F1,F2(|F1F2|=2c>0)的距离之差的绝对值为非零常数2a(2a<2c)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点.
    (2)集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,
    其中a,c为常数且a>0,c>0.
    ①当2a<|F1F2|时,M点的轨迹是双曲线;
    ②当2a=|F1F2|时,M点的轨迹是两条射线;
    ③当2a>|F1F2|时,M点不存在.
    2.双曲线的标准方程和几何性质
    标准方程
    -=1(a>0,b>0)
    -=1(a>0,b>0)
    图形


    性质
    范围
    x≥a或x≤-a,y∈R
    y≤-a或y≥a,x∈R
    对称性
    对称轴:坐标轴,对称中心:原点
    顶点
    A1(-a,0),A2(a,0)
    A1(0,-a),A2(0,a)
    渐近线
    y=±x
    y=±x
    离心率
    e=,e∈(1,+∞)
    实、虚轴
    线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长
    a,b,c的关系
    c2=a2+b2(c>a>0,c>b>0)

    双曲线中的几个常用结论
    (1)焦点到渐近线的距离为b.
    (2)实轴长和虚轴长相等的双曲线叫做等轴双曲线.
    (3)双曲线为等轴双曲线⇔双曲线的离心率e=⇔双曲线的两条渐近线互相垂直(位置关系).
    (4)过双曲线的一个焦点且与实轴垂直的弦的长为.
    (5)过双曲线焦点F1的弦AB与双曲线交在同支上,则AB与另一个焦点F2构成的△ABF2的周长为4a+2|AB|.
    (6)双曲线的离心率公式可表示为e=.

    一、思考辨析(正确的打“√”,错误的打“×”)
    (1)平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线. (  )
    (2)方程-=1(mn>0)表示焦点在x轴上的双曲线. (  )
    (3)双曲线-=λ(m>0,n>0,λ≠0)的渐近线方程是-=0,即±=0. (  )
    (4)等轴双曲线的渐近线互相垂直,离心率等于. (  )
    [答案](1)× (2)× (3)√ (4)√
    二、教材改编
    1.若双曲线-=1(a>0,b>0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为(  )
    A.    B.5    C.    D.2
    A [由题意可知b=2a,
    ∴e===,故选A.]
    2.以椭圆+=1的焦点为顶点,顶点为焦点的双曲线方程为 (  )
    A.x2-=1 B.-y2=1
    C.x2-=1 D.-=1
    A [设所求的双曲线方程为-=1(a>0,b>0),由椭圆+=1,得椭圆焦点为(±1,0),在x轴上的顶点为(±2,0).所以双曲线的顶点为(±1,0),焦点为(±2,0). 所以a=1,c=2,所以b2=c2-a2=3,所以双曲线标准方程为x2-=1.]
    3.若方程-=1表示双曲线,则m的取值范围是 .
    (-∞,-2)∪(-1,+∞) [因为方程-=1表示双曲线,所以(2+m)(m+1)>0,即m>-1或m<-2.]
    4.已知双曲线x2-=1上一点P到它的一个焦点的距离等于4,那么点P到另一个焦点的距离等于 .
    6 [设双曲线的焦点为F1,F2,|PF1|=4,则||PF1|-|PF2||=2,故|PF2|=6或2,又双曲线上的点到焦点的距离的最小值为c-a=-1,故|PF2|=6.]

    考点1 双曲线的定义及其应用
     双曲线定义的主要应用
    (1)根据动点与两定点的距离的差判断动点的轨迹是否为双曲线.
    (2)利用双曲线的定义解决与双曲线的焦点有关的问题,如最值问题、距离问题.
    (1)已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,则动圆圆心M的轨迹方程为 .
    (2)已知F是双曲线-=1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为 .
    (3)已知F1,F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2= .
    (1)x2-=1(x≤-1) (2)9 (3)[(1)如图所示,设动圆M与圆C1及圆C2分别外切于点A和B.
    根据两圆外切的条件,得|MC1|-|AC1|=|MA|,|MC2|-|BC2|=|MB|.

    因为|MA|=|MB|,
    所以|MC1|-|AC1|=|MC2|-|BC2|,
    即|MC2|-|MC1|=|BC2|-|AC1|=2,
    所以点M到两定点C1,C2的距离的差是常数且小于|C1C2|.
    根据双曲线的定义,得动点M的轨迹为双曲线的左支(点M与C2的距离大,与C1的距离小),其中a=1,c=3,则b2=8.
    故点M的轨迹方程为x2-=1(x≤-1).
    (2)设双曲线的右焦点为F1,则由双曲线的定义,可知|PF|=4+|PF1|,所以当|PF1|+|PA|最小时满足|PF|+|PA|最小.由双曲线的图象,可知当点A,P,F1共线时,满足|PF1|+|PA|最小,|AF1|即|PF1|+|PA|的最小值.又|AF1|=5,故所求的最小值为9.
    (3)因为由双曲线的定义有|PF1|-|PF2|=|PF2|=2a=2,
    所以|PF1|=2|PF2|=4,
    所以cos∠F1PF2=
    ==.]
    [母题探究]
    1.将本例(3)中的条件“|PF1|=2|PF2|”改为“∠F1PF2=60°”,则△F1PF2的面积是多少?
    [解] 不妨设点P在双曲线的右支上,
    则|PF1|-|PF2|=2a=2,
    在△F1PF2中,由余弦定理,得
    cos∠F1PF2==,
    ∴|PF1|·|PF2|=8,
    ∴S△F1PF2=|PF1|·|PF2|·sin 60°=2.
    2.将本例(3)中的条件“|PF1|=2|PF2|”改为“·=0”,则△F1PF2的面积是多少?
    [解] 不妨设点P在双曲线的右支上,
    则|PF1|-|PF2|=2a=2,
    ∵·=0,∴⊥,
    ∴在△F1PF2中,有|PF1|2+|PF2|2=|F1F2|2,
    即|PF1|2+|PF2|2=16,
    ∴|PF1|·|PF2|=4,
    ∴S△F1PF2=|PF1|·|PF2|=2.
     在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF1|-|PF2||=2a,运用平方的方法,建立与|PF1|·|PF2|的联系.
    1.虚轴长为2,离心率e=3的双曲线的两焦点为F1,F2,过F1作直线交双曲线的一支于A,B两点,且|AB|=8,则△ABF2的周长为(  )
    A.3           B.16+
    C.12+ D.24
    B [由于2b=2,e==3,∴b=1,c=3a,
    ∴9a2=a2+1,∴a=.
    由双曲线的定义知,|AF2|-|AF1|=2a=, ①
    |BF2|-|BF1|=, ②
    ①+②得|AF2|+|BF2|-(|AF1|+|BF1|)=,
    又|AF1|+|BF1|=|AB|=8,
    ∴|AF2|+|BF2|=8+,
    则△ABF2的周长为16+,故选B.]
    2.(2019·洛阳模拟)已知双曲线x2-y2=4,F1是左焦点,P1,P2是右支上的两个动点,则|F1P1|+|F1P2|-|P1P2|的最小值是 .
    8 [设双曲线的右焦点为F2,∵|F1P1|=2a+|F2P1|,|F1P2|=2a+|F2P2|,∴|F1P1|+|F1P2|-|P1P2|=2a+|F2P1|+2a+|F2P2|-|P1P2|=8+(|F2P1|+|F2P2|-|P1P2|)≥8(当且仅当P1,P2,F2三点共线时,取等号),∴|F1P1|+|F1P2|-|P1P2|的最小值是8.]
    考点2 双曲线的标准方程
     求双曲线标准方程的方法
    (1)定义法:由条件判定动点的轨迹是双曲线,求出a2,b2,得双曲线方程.
    (2)待定系数法:即“先定位,后定量”.
    ①焦点位置不确定时,设Ax2+By2=1(AB<0);
    ②与-=1共渐近线的设为-=λ(λ≠0);
    ③与-=1共焦点的设为-=1(-b2 (1)(2019·大连模拟)已知F1,F2分别为双曲线-=1(a>0,b>0)的左、右焦点,P为双曲线上一点,PF2与x轴垂直,∠PF1F2=30°,且虚轴长为2,则双曲线的标准方程为(  )
    A.-=1 B.-=1
    C.-=1 D.x2-=1
    (2)根据下列条件,求双曲线的标准方程:
    ①虚轴长为12,离心率为;
    ②渐近线方程为y=±x,焦距为10;
    ③经过两点P(-3,2)和Q(-6,-7);
    (1)D [(1)由题意可知|PF1|=,|PF2|=,2b=2,由双曲线的定义可得-=2a,即c=a.又b=,c2=a2+b2,∴a=1,∴双曲线的标准方程为x2-=1,故选D.]
    (2)[解] ① 设双曲线的标准方程为
    -=1或-=1(a>0,b>0).
    由题意知,2b=12,e==,∴b=6,c=10,a=8.
    ∴双曲线的标准方程为-=1或-=1.
    ②设所求双曲线方程为-y2=λ(λ≠0),
    当λ>0时,双曲线标准方程为-=1,
    ∴c=.∴=5,λ=5;
    当λ<0时,双曲线标准方程为-=1,
    ∴c=.
    ∴=5,λ=-5.
    ∴所求双曲线方程为-=1或-=1.
    ③设双曲线方程为mx2-ny2=1.(mn>0)
    ∴解之得
    ∴双曲线方程为-=1.
    (1)利用双曲线的定义解决问题时应注意三点:①距离之差的绝对值;②2a<|F1F2|;③焦点所在坐标轴的位置.(2)求双曲线标准方程时,如果不能确定焦点的位置,应注意分类讨论.
     1.(2019·荆州模拟)已知双曲线C:-=1(a>0,b>0)过点(,),且实轴的两个端点与虚轴的一个端点构成一个等边三角形,则双曲线C的标准方程是(  )
    A.-y2=1 B.-=1
    C.x2-=1 D.-=1
    C [由双曲线C:-=1(a>0,b>0)过点(,),且实轴的两个端点与虚轴的一个端点构成一个等边三角形,可得解得∴双曲线C的标准方程是x2-=1,故选C.]
    2.已知双曲线的渐近线方程为3x±4y=0,焦点坐标为(±5,0),则双曲线的方程为 .
    -=1 [将3x±4y=0化为±=0,设以±=0为渐近线的双曲线方程为-=λ(λ≠0),因为该双曲线的焦点坐标为(±5,0),所以16λ+9λ=25,解得λ=1,即双曲线的方程为-=1.]
    考点3 双曲线的几何性质
     双曲线的渐近线
     求双曲线的渐近线的方法
    求双曲线-=1(a>0,b>0)或-=1(a>0,b>0)的渐近线方程的方法是令右边的常数等于0,即令-=0,得y=±x;或令-=0,得y=±x.反之,已知渐近线方程为y=±x,可设双曲线方程为-=λ(a>0,b>0,λ≠0).
     1.[一题多解](2018·全国Ⅱ卷)双曲线-=1(a>0,b>0)的离心率为,则其渐近线方程为(  )
    A.y=±x B.y=±x
    C.y=±x D.y=±x
    A [法一:(直接法)由题意知,e==,所以c=a,所以b==a,即=,所以该双曲线的渐近线方程为y=±x=±x.
    法二:(公式法)由e===,得=,所以该双曲线的渐近线方程为y=±x=±x.]
    2.(2019·揭阳一模)已知双曲线mx2+y2=1的一条渐近线方程为2x+y=0,则m的值为(  )
    A.- B.-1
    C.-2 D.-4
    D [因为m<0,则双曲线为:y2-=1,渐近线方程为:±x+y=0,
    所以=2,解得m=-4,故选D.]
    3.(2019·郑州模拟)设F1,F2分别是双曲线C:-=1(a>0,b>0)的左、右焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角的大小为30°,则双曲线C的渐近线方程是(  )
    A.x±y=0 B.x±y=0
    C.x±2y=0 D.2x±y=0
    B [假设点P在双曲线的右支上,
    则∴|PF1|=4a,|PF2|=2a.
    ∵|F1F2|=2c>2a,∴△PF1F2最短的边是PF2,
    ∴△PF1F2的最小内角为∠PF1F2.
    在△PF1F2中,由余弦定理得
    4a2=16a2+4c2-2×4a×2c×cos 30°,
    ∴c2-2ac+3a2=0,
    ∴e2-2e+3=0,∴e=,∴=,
    ∴c2=3a2,∴a2+b2=3a2,∴b2=2a2,∴=,
    ∴双曲线的渐近线方程为x±y=0,故选B.]
    4.(2019·江苏高考)在平面直角坐标系xOy中,若双曲线x2-=1(b>0)经过点(3,4),则该双曲线的渐近线方程是 .
    y=±x [∵双曲线x2-=1(b>0)经过点(3,4),∴32-=1,
    解得b2=2,即b=.
    又a=1,
    ∴该双曲线的渐近线方程是y=±x.]
     双曲线的离心率
     求双曲线的离心率或其范围的方法
    (1)求a,b,c的值,由==1+直接求e.
    (2)列出含有a,b,c的齐次方程(或不等式),借助于b2=c2-a2消去b,然后转化成关于e的方程(或不等式)求解.
    (1)已知点F是双曲线-=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过F作垂直于x轴的直线与双曲线交于A,B两点,若△ABE是锐角三角形,则该双曲线的离心率e的取值范围是(  )
    A.(1,+∞)  B.(1,2)
    C.(2,1+) D.(1,1+)
    (2)(2019·全国卷Ⅰ)已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若=,·=0,则C的离心率为 .
    (1)B (2)2  [(1)若△ABE是锐角三角形,只需∠AEF<45°,在Rt△AFE中,|AF|=,|FE|=a+c,则<a+c,即b2<a2+ac,即2a2-c2+ac>0,则e2-e-2<0,解得-1<e<2,又e>1,则1<e<2,故选B.
    (2)如图,由=,得F1A=AB.

    又OF1=OF2,所以OA是三角形F1F2B的中位线,
    即BF2//OA,
    BF2=2OA.
    由·=0,得F1B⊥F2B,OA⊥F1A,
    则OB=OF1,所以∠AOB=∠AOF1,
    又OA与OB都是渐近线,得∠BOF2=∠AOF1,
    又∠BOF2+∠AOB+∠AOF1=π,
    得∠BOF2=∠AOF1=∠BOA=60°,
    又渐近线OB的斜率为=tan 60°=,
    所以该双曲线的离心率为e====2.]
     双曲线的渐近线的斜率k与离心率e的关系:k====.
     1.(2019·衡水模拟)已知双曲线C1:-=1(a>0,b>0),圆C2:x2+y2-2ax+a2=0,若双曲线C1的一条渐近线与圆C2有两个不同的交点,则双曲线C1的离心率的取值范围是(  )
    A. B.
    C.(1,2) D.(2,+∞)
    A [由双曲线方程可得其渐近线方程为y=±x,即bx±ay=0,圆C2:x2+y2-2ax+a2=0可化为(x-a)2+y2=a2,圆心C2的坐标为(a,0),半径r=a,由双曲线C1的一条渐近线与圆C2有两个不同的交点,得2b,即c2>4b2,又知b2=c2-a2,所以
    c2>4(c2-a2),即c21,所以双曲线C1的离心率的取值范围为.]
    2.(2019·济南模拟)已知双曲线E:-=1(a>0,b>0).若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是 .
    2 [由已知得|AB|=|CD|=,|BC|=|AD|=|F1F2|=2c.因为2|AB|=3|BC|,所以=6c,
    又b2=c2-a2,所以2e2-3e-2=0,
    解得e=2,或e=-(舍去).]


    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021版江苏高考数学一轮复习讲义:第8章第6节 双曲线
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map