还剩21页未读,
继续阅读
所属成套资源:2020高考物理一轮复习文档
成套系列资料,整套一键下载
2020年高考物理一轮复习文档:第11章电磁感应第52讲 学案
展开
第52讲 法拉第电磁感应定律 自感
考点一 法拉第电磁感应定律
1.感应电动势
(1)概念:在电磁感应现象中产生的电动势。
(2)产生:只要穿过回路的磁通量发生变化,就能产生感应电动势,与电路是否闭合无关。
(3)方向:产生感应电动势的电路(导体或线圈)相当于电源,电源的正、负极可由右手定则或楞次定律判断。
2.法拉第电磁感应定律
(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
(2)公式:E=n,其中为磁通量的变化率,n为线圈匝数。
3.说明
(1)在满足B⊥S的条件下,当ΔΦ仅由B的变化引起时,则E=n;当ΔΦ仅由S的变化引起时,则E=n;当ΔΦ由B、S的变化同时引起时,则E=n≠n。
(2)磁通量的变化率是Φt图象上某点切线的斜率。
1.[教材母题] (人教版选修3-2 P17·T1)关于电磁感应,下述说法正确的是什么?
A.穿过线圈的磁通量越大,感应电动势越大。
B.穿过线圈的磁通量为0,感应电动势一定为0。
C.穿过线圈的磁通量的变化越大,感应电动势越大。
D.穿过线圈的磁通量变化越快,感应电动势越大。
[变式子题] 关于法拉第电磁感应定律,下列说法正确的是( )
A.线圈中的磁通量变化越大,线圈中产生的感应电动势就越大
B.线圈中的磁通量变化越快,线圈中产生的感应电动势就越大
C.线圈中的磁通量越大,线圈中产生的感应电动势就越大
D.线圈放在磁场越强的地方,线圈中产生的感应电动势就越大
答案 B
解析 根据法拉第电磁感应定律E=n得,感应电动势的大小跟磁通量的变化率成正比。磁通量变化大,由于不知磁通量的变化时间,故不一定越大,A错误;磁通量变化的快慢用表示,磁通量变化越快,则就大,根据法拉第电磁感应定律知产生的感应电动势就越大,B正确;磁通量Φ越大,但不一定越大,C错误;磁感应强度大的磁场中可能没有磁通量的变化,则感应电动势可能为零,D错误。
2. (2018·榆林模拟)在一空间有方向相反,磁感应强度大小均为B的匀强磁场,如图所示,向外的磁场分布在一半径为a的圆形区域内,向内的磁场分布在除圆形区域外的整个区域,该平面内有一半径为b(b>a)的圆形线圈,线圈平面与磁感应强度方向垂直,线圈与半径为a的圆形区域是同心圆。从某时刻起磁感应强度在Δt时间内均匀减小到,则此过程中该线圈产生的感应电动势大小为( )
A. B.
C. D.
答案 D
解析 线圈内存在两个方向相反的匀强磁场区域,穿过线圈的磁通量变化量为ΔΦ=πB(b2-2a2)-=。根据法拉第电磁感应定律可得线圈中产生的感应电动势的大小为E==,故选D。
3.半径为r的带缺口刚性金属圆环在纸面上固定放置,并处在变化的磁场中,在圆环的缺口两端引出两根导线,分别与两块固定放置的平行金属板连接,两板间距为d,如图甲所示。磁场的方向垂直于纸面,规定垂直纸面向里为正,变化规律如图乙所示。则以下说法正确的是( )
A.第2 s内上极板为正极
B.第3 s内上极板为负极
C.第2 s末两极板之间的电场强度大小为零
D.第4 s末两极板之间的电场强度大小为
答案 A
解析 第2 s内情况:由楞次定律可知,金属板上极板带正电,金属板下极板带负电,故A正确;第3 s内情况:由楞次定律可知,金属板上极板带正电,金属板下极板带负电,故B错误;根据法拉第电磁感应定律可知,第2 s末感应电动势不为零,则两极板之间的电场强度大小不为零,故C错误;由题意可知,第4 s末两极板间的电场强度大小E====,故D错误。考点二 导体切割磁感线产生感应电动势的计算
1.E=Blv的三个特性
(1)正交性:本公式要求磁场为匀强磁场,而且B、l、v三者互相垂直。
(2)有效性:公式中的l为导体棒切割磁感线的有效长度。如图中,导体棒的有效长度为ab间的距离。
(3)相对性:E=Blv中的速度v是导体棒相对磁场的速度,若磁场也在运动,应注意速度间的相对关系。
2.导体棒转动切割磁感线
当导体棒在垂直于磁场的平面内,绕一端以角速度ω匀速转动时,产生的感应电动势为E=Bl=Bl2ω,如图所示。
3.公式E=n与E=Blv的比较
如图所示,一金属弯杆处在磁感应强度大小为B、方向垂直纸面向里的匀强磁场中,已知ab=bc=L,当它以速度v向右平动时,c、a两点间的电势差为( )
A.BLv B.BLvsinθ
C.BLvcosθ D.BLv(1+sinθ)
解析 公式E=BLv中的L应指导体切割磁感线的有效长度,也就是与磁感应强度B和速度v垂直的长度,因此该金属弯杆的有效切割长度为Lsinθ,故感应电动势大小为BLvsinθ,故B正确。
答案 B
方法感悟
解答本题要把握以下两点:
(1)公式E=BLv的应用条件是两两垂直,当有物理量不垂直时,要利用等效法将其转化为两两垂直。
(2)将abc分为两段,ab不切割磁感线,不产生感应电动势,bc切割磁感线但不符合两两垂直,要先进行转化再求解。
1.金属线圈ABC构成一个等腰直角三角形,腰长为a,绕垂直于纸面通过A的轴在纸面内匀速转动,角速度为ω,
如图所示。若加上一个垂直纸面向里的磁感应强度为B的匀强磁场,则B、A间的电势差UBA,B、C间的电势差UBC分别为多少?
答案 Bωa2 Bωa2
解析 AC、BC、AB均绕垂直于纸面通过A的轴以角速度ω匀速转动,△ABC中磁通量不变,所以线圈中没有电流。但当单独考虑每条边时,三边均切割磁感线,均有感应电动势产生,且B点电势大于C点电势和A点电势。则有UBA=EBA=BL=BωL=Bωa2,UCA=ECA=BωL=Bωa2,UBC=UBA-UCA=Bωa2-Bωa2=Bωa2。
2.如图所示,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0。使该线框从静止开始绕过圆心O、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流。现使线框保持图中所示位置,磁感应强度大小随时间线性变化。为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率的大小应为( )
A. B. C. D.
答案 C
解析 设圆的半径为r,当其绕过圆心O的轴匀速转动时,圆弧部分不切割磁感线,不产生感应电动势,而在转过半周的过程中直径只有一半在磁场中切割磁感线,产生的感应电动势E=B0r=B0r·=B0r2ω;当线框不动时,E′=·。由闭合电路欧姆定律得I=,要使I=I′,必须使E=E′,可得=,C正确。
考点三 自感
1.定义:一个线圈中的电流变化时,它所产生的变化的磁场在它本身激发出感应电动势,这种现象称为自感。产生的电动势叫做自感电动势。
2.通电自感和断电自感
3.规律
(1)自感电动势总要阻碍引起自感的原电流的变化,符合楞次定律。
(2)通过线圈的电流不能发生突变,只能缓慢变化。
(3)当线圈中电流变化时,线圈相当于电源;当线圈中电流不变时,线圈相当于导线或电阻。
(4)自感电动势的大小:E=L,自感系数越大,自感现象越明显。自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向。
4.自感中“闪亮”与“不闪亮”问题
1. (多选)线圈通以如图所示的随时间变化的电流,则( )
A.0~t1时间内线圈中的自感电动势最大
B.t1~t2时间内线圈中的自感电动势最大
C.t2~t3时间内线圈中的自感电动势最大
D.t1~t2时间内线圈中的自感电动势为零
答案 CD
解析 线圈中的自感电动势与通入的电流的变化率成正比,即E∝。根据图象分析:0~t1时间内的电流变化率小于t2~t3时间内的电流变化率,t1~t2时间内的电流变化率为零,自感电动势为零,A、B错误,C、D正确。
2. [教材母题] (人教版选修3-2 P25·T3)如图所示,L是自感系数很大的线圈,但其自身的电阻几乎为0。A和B是两个相同的小灯泡。
(1)当开关S由断开变为闭合时,A、B两个灯泡的亮度将如何变化?
(2)当开关S由闭合变为断开时,A、B两个灯泡的亮度又将如何变化?在老师的指导下做一做这个实验,以检验你的预测。
[变式子题] (多选)如图所示,电源的电动势为E,内阻r忽略不计。A、B是两个相同的小灯泡,L是一个自感系数相当大的线圈。以下说法正确的是( )
A.从开关闭合到电路中电流稳定的时间内,A灯立刻亮,且亮度保持稳定
B.从开关闭合到电路中电流稳定的时间内,B灯立刻亮,且亮度保持稳定
C.开关断开后瞬间,A灯闪亮一下再熄灭
D.开关断开后瞬间,电流自右向左通过A灯
答案 AD
解析 开关闭合,A灯立刻亮,因为电源没有内阻,所以A灯两端的电压保持不变,灯泡亮度稳定,故A正确;因为L是一个自感系数相当大的线圈,所以开关闭合时B灯不亮,然后逐渐变亮,最后亮度稳定,故B错误;两个灯泡电阻一样,若L也没有电阻,则开关断开前后A灯的电流相同,不会闪亮;若L有电阻,则通过B的电流小于A的电流,所以A也不会闪亮一下,故C错误;开关断开后瞬间,L产生感应电动势,在回路中通过A灯的电流方向为从右向左,故D正确,故选A、D。
3.(2017·北京高考)图1和图2是演示自感现象的两个电路图,L1和L2为电感线圈。实验时,断开开关S1瞬间,灯A1突然闪亮,随后逐渐变暗;闭合开关S2,灯A2逐渐变亮,而另一个相同的灯A3立即变亮,最终A2与A3的亮度相同。下列说法正确的是( )
A.图1中,A1与L1的电阻值相同
B.图1中,闭合S1,电路稳定后,A1中电流大于L1中电流
C.图2中,变阻器R与L2的电阻值相同
D.图2中,闭合S2瞬间,L2中电流与变阻器R中电流相等
答案 C
解析 图1中,断开开关S1瞬间,L1与灯A1组成闭合回路,L1产生感应电动势阻碍电流的变化,电流逐渐减小,由于灯A1突然闪亮,故断开开关S1之前,通过L1的电流大于通过灯A1的电流,由欧姆定律知,A1的电阻值大于L1的电阻值,A、B错误;图2中,闭合开关S2,电路稳定后A2与A3的亮度相同,又A2与A3相同,由欧姆定律知,变阻器R与L2的电阻值相同,C正确;图2中,闭合S2瞬间,由于L2产生感应电动势阻碍电流的增加,故L2中电流小于变阻器R中电流,D错误。
考点四 涡流、电磁驱动和电磁阻尼
1.涡流现象
(1)涡流:块状金属放在变化的磁场中,或者让它在磁场中运动时,金属块内产生的旋涡状感应电流。
(2)产生原因:金属块内磁通量变化→感应电动势→感应电流。
(3)涡流的利用:冶炼金属的高频感应炉利用涡流产生焦耳热使金属熔化;家用电磁炉也是利用涡流原理制成的。
(4)涡流的减小:各种电动机和变压器中,用涂有绝缘漆的硅钢片叠加成铁芯,以减小涡流。
2.电磁阻尼与电磁驱动的比较
(2017·全国卷Ⅰ)扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌。为了有效隔离外界振动对STM的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图所示。无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及左右振动的衰减最有效的方案是( )
解析 底盘上的紫铜薄板出现扰动时,其扰动方向不确定,在选项C这种情况下,紫铜薄板出现上下或左右扰动时,穿过薄板的磁通量难以改变,不能发生电磁感应现象,没有阻尼效应;在选项B、D这两种情况下,紫铜薄板出现上下扰动时,也没有发生电磁阻尼现象;选项A这种情况下,不管紫铜薄板出现上下或左右扰动时,都发生电磁感应现象,产生电磁阻尼效应,选项A正确。
答案 A
方法感悟
(1)涡流是整块导体发生的电磁感应现象,同样遵守法拉第电磁感应定律,磁场变化越快,导体横截面积越大,导体材料的电阻率越小,形成的涡流就越大。
(2)电磁阻尼是导体棒在磁场中运动产生感应电流,导体棒受到的安培力阻碍导体棒运动的现象。电磁驱动是磁场运动,在导体棒中产生感应电流,导体棒受到安培力的作用,跟随磁场一起运动的现象。
(3)电磁阻尼、电磁驱动现象中安培力的效果阻碍相对运动,应注意电磁驱动中阻碍的结果,导体运动速度要小于磁场的运动速度。
(2015·全国卷Ⅰ)(多选)1824年,法国科学家阿拉果完成了著名的“圆盘实验”。实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示。实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后。下列说法正确的是( )
A.圆盘上产生了感应电动势
B.圆盘内的涡电流产生的磁场导致磁针转动
C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化
D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动
答案 AB
解析 当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,圆盘的半径切割磁感线产生感应电动势和感应电流,选项A正确;圆盘内的涡电流产生的磁场对磁针施加磁场力作用,导致磁针转动,选项B正确;由于圆盘中心正上方悬挂小磁针,在圆盘转动过程中,根据磁针磁场的分布的对称性,穿过整个圆盘的磁通量一直为零,选项C错误;圆盘中的电流并不是自由电子随圆盘一起运动产生的,而是切割磁感线产生了涡电流,涡电流的磁场导致磁针转动,选项D错误。
课后作业
[巩固强化练]
1. 如图所示,由导体棒ab和矩形线框cdef组成的“10”图案在匀强磁场中一起向右匀速平动,匀强磁场的方向垂直线框平面向里,磁感应强度B随时间均匀增大,则下列说法正确的是( )
A.导体棒的a端电势比b端电势高,电势差Uab在逐渐增大
B.导体棒的a端电势比b端电势低,电势差Uab在逐渐增大
C.线框cdef中有顺时针方向的电流,电流大小在逐渐增大
D.线框cdef中有逆时针方向的电流,电流大小在逐渐增大
答案 A
解析 对于导体棒ab,由于磁感应强度B随时间均匀增大,所以Uab=Blv逐渐增大,由右手定则知a端电势高于b端电势,A正确,B错误;对于矩形线框,依题意可知、S都不变,由法拉第电磁感应定律E=·S知线框中产生的感应电动势大小不变,由闭合电路欧姆定律知线框中的感应电流大小不变,C、D错误。
2. A、B两闭合圆形导线环用相同规格的导线制成,它们的半径之比rA∶rB=2∶1,在两导线环包围的空间内存在一正方形边界的匀强磁场区域,磁场方向垂直于两导线环所在的平面,如图所示。当磁场的磁感应强度随时间均匀增大的过程中,流过两导线环的感应电流大小之比为( )
A.=1 B.=2 C.= D.=
答案 D
解析 匀强磁场的磁感应强度随时间均匀增大,即不变,E==·S(S为磁场区域面积),由于及S均相同,可得两导线环产生的感应电动势相等,即=1,I=,R=ρ(S′为导线的横截面积),l=2πr,所以====。D正确。
3. 如图,一匝数为N、面积为S、总电阻为R的圆形线圈,放在磁感应强度为B的匀强磁场中,磁场方向垂直于线圈平面。当线圈由原位置翻转180°的过程中,通过线圈导线横截面的电荷量为( )
A. B. C. D.
答案 B
解析 由法拉第电磁感应定律E=N,可求出感应电动势的大小,再由闭合电路欧姆定律I=,可求出感应电流的大小,根据电荷量公式q=IΔt,可得q=N。由于开始线圈平面与磁场垂直,现把线圈翻转180°,则有ΔΦ=2BS,所以由上述公式可得通过线圈导线横截面的电荷量q=,B正确,A、C、D错误。
4. (多选)如图是生产中常用的一种延时继电器的示意图,铁芯上有两个线圈A和B,线圈A跟电源连接,线圈B的两端接在一起,构成一个闭合回路。下列说法中正确的是( )
A.闭合开关S时,B中产生图示方向的感应电流
B.闭合开关S时,B中产生与图示方向相反的感应电流
C.断开开关S时,电磁铁会继续吸住衔铁D一小段时间
D.断开开关S时,弹簧K立即将衔铁D拉起
答案 BC
解析 闭合开关S时,由楞次定律知B中产生与图示方向相反的感应电流,A错误,B正确;断开开关S时,B中磁通量变化产生感应电流,电磁铁会继续吸住衔铁D一小段时间,C正确,D错误。
5. (多选)如图所示,L是自感系数很大的、用铜导线绕成的线圈,其电阻可以忽略不计,开关S原来是闭合的。当开关S断开瞬间,则( )
A.L中的电流方向不变
B.灯泡D要过一会儿才熄灭
C.灯泡D立即熄灭
D.电容器将放电
答案 AC
解析 S断开时,由于自感电动势,L中的电流沿原方向缓慢减小,对C充电(C两端电压原来为零),而电流不通过灯泡D,故灯泡立即熄灭,A、C正确。
6.在半径为r、电阻为R的圆形导线框内,以竖直直径为界,左、右两侧分别存在着方向如图甲所示的匀强磁场。以垂直纸面向外的方向为磁场的正方向,两部分磁场的磁感应强度B随时间t的变化规律如图乙所示。则0~t0时间内,导线框中( )
A.没有感应电流
B.感应电流方向为逆时针
C.感应电流大小为
D.感应电流大小为
答案 C
解析 根据楞次定律可知,导线框左边产生的感应电流沿顺时针方向,导线框右边产生的感应电流也沿顺时针方向,则整个导线框中的感应电流沿顺时针方向,A、B错误;由法拉第电磁感应定律可知,导线框中产生的感应电动势为导线框左、右两边产生的感应电动势之和,即E=2×S=2×=,由闭合电路欧姆定律可得,感应电流大小为I==,C正确,D错误。
7. 如图所示,半径为R的圆形导轨处在垂直于圆平面的匀强磁场中,磁场的磁感应强度为B,方向垂直于纸面向里。一根长度略大于导轨直径的导体棒MN以速率v在圆导轨上从左端滑到右端,电路中的定值电阻为r,其余电阻不计。导体棒与圆形导轨接触良好。求:
(1)在滑动过程中通过电阻r上的电流的平均值;
(2)MN从左端到右端的整个过程中,通过r的电荷量;
(3)当MN通过圆导轨中心时,通过r的电流是多少?
答案 (1) (2) (3)
解析 导体棒从左向右滑动的过程中,切割磁感线产生感应电动势,对电阻r供电。
(1)计算平均电流,应该用法拉第电磁感应定律,先求出平均感应电动势。
整个过程磁通量的变化为ΔΦ=BS=BπR2,
所用的时间Δt=,
代入公式=,
得平均电流为==。
(2)电荷量的运算应该用平均电流,q=Δt=。
(3)当MN通过圆形导轨中心时,切割磁感线的有效长度最大,为l=2R,根据E=Blv得E=B·2Rv,此时通过r的电流为I==。
[真题模拟练]
8.(2018·全国卷Ⅰ) 如图,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中点,O为圆心。轨道的电阻忽略不计。OM是有一定电阻、可绕O转动的金属杆,M端位于PQS上,OM与轨道接触良好。空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B。现使OM从OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B′(过程Ⅱ)。在过程Ⅰ、Ⅱ中,流过OM的电荷量相等,则等于( )
A. B. C. D.2
答案 B
解析 通过导体横截面的电荷量为:q=·Δt=·Δt=n,过程Ⅰ流过OM的电荷量为:q1=;过程Ⅱ流过OM的电荷量:q2=,依题意有:q1=q2,即:B·πr2=(B′-B)·πr2,解得:=,正确答案为B。
9.(2018·全国卷Ⅲ)(多选)如图a,在同一平面内固定有一长直导线PQ和一导线框R,R在PQ的右侧。导线PQ中通有正弦交流电流i,i的变化如图b所示,规定从Q到P为电流的正方向。导线框R中的感应电动势( )
A.在t=时为零
B.在t=时改变方向
C.在t=时最大,且沿顺时针方向
D.在t=T时最大,且沿顺时针方向
答案 AC
解析 由图b可知,导线PQ中电流在t=时达到最大值,变化率为零,导线框R中磁通量变化率为零,根据法拉第电磁感应定律,在t=时导线框中产生的感应电动势为零,A正确;在t=时,导线PQ中电流图象斜率正负不变,导致导线框R中磁通量变化率的正负不变,根据楞次定律,所以在t=时,导线框中产生的感应电动势方向不变,B错误;由于在t=时,导线PQ中电流图象斜率最大,电流变化率最大,导致导线框R中磁通量变化率最大,根据法拉第电磁感应定律,在t=时导线框中产生的感应电动势最大,由楞次定律可判断出感应电动势的方向为顺时针方向,C正确;由楞次定律可判断出在t=T时感应电动势的方向为逆时针方向,D错误。
10.(2016·全国卷Ⅱ) (多选)法拉第圆盘发电机的示意图如图所示。铜圆盘安装在竖直的铜轴上,两铜片P、Q分别与圆盘的边缘和铜轴接触。圆盘处于方向竖直向上的匀强磁场B中。圆盘旋转时,关于流过电阻R的电流,下列说法正确的是( )
A.若圆盘转动的角速度恒定,则电流大小恒定
B.若从上向下看,圆盘顺时针转动,则电流沿a到b的方向流动
C.若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化
D.若圆盘转动的角速度变为原来的2倍,则电流在R上的热功率也变为原来的2倍
答案 AB
解析 设圆盘的半径为r,圆盘转动的角速度为ω,则圆盘转动产生的电动势为E=Bl=Br·=Bωr2,可知,转动的角速度恒定,电动势恒定,电流恒定,A正确;根据右手定则可知,从上向下看,圆盘顺时针转动,圆盘中电流由边缘指向圆心,即电流沿a到b的方向流动,B正确;圆盘转动方向不变,产生的电流方向不变,C错误;若圆盘转动的角速度变为原来的2倍,则电动势变为原来的2倍,电流变为原来的2倍,由P=I2R可知,电阻R上的热功率变为原来的4倍,D错误。
11.(2018·潍坊高三统考)(多选) 如图所示,等边三角形导体框abc边长为l,bd⊥ac,导体框绕轴bd以角速度ω匀速转动,导体框所在空间有竖直向上、磁感应强度为B的匀强磁场。下列说法正确的是( )
A.导体框中无感应电流
B.导体框中产生正弦交变电流
C.a、d两点间电势差为0
D.a、d两点间电压为Bωl2
答案 AD
解析 由于导体框平面始终与磁场方向平行,则穿过导体框的磁通量始终为零,即导体框中无感应电流,A正确,B错误;由导体棒在磁场中转动切割磁感线产生感应电动势可知,a、d两点间的电压为E=Bω2=Bωl2,C错误,D正确。
12.(2018·潍坊高三统考) 如图所示,平行金属导轨宽度L=1 m,固定在水平面内,左端A、C间接有R=4 Ω的电阻,金属棒DE质量m=0.36 kg,电阻r=1 Ω,垂直导轨放置,金属棒与导轨间的动摩擦因数为μ=0.5,到AC的距离x=1.5 m。匀强磁场与水平面成37°角斜向左上方,与金属棒垂直,磁感应强度随时间t变化的规律是B=(1+2t) T。设最大静摩擦力等于滑动摩擦力,不计导轨电阻,sin37°=0.6,cos37°=0.8,g=10 m/s2,则经多长时间金属棒开始滑动?
答案 12 s
解析 回路中的感应电动势
E=Lxsin37°
感应电流I=
对金属棒受力分析,有
FA=BIL
FAsin37°=μN
N=mg+FAcos37°
又B=(1+2t) T,
联立解得t=12 s。
考点一 法拉第电磁感应定律
1.感应电动势
(1)概念:在电磁感应现象中产生的电动势。
(2)产生:只要穿过回路的磁通量发生变化,就能产生感应电动势,与电路是否闭合无关。
(3)方向:产生感应电动势的电路(导体或线圈)相当于电源,电源的正、负极可由右手定则或楞次定律判断。
2.法拉第电磁感应定律
(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
(2)公式:E=n,其中为磁通量的变化率,n为线圈匝数。
3.说明
(1)在满足B⊥S的条件下,当ΔΦ仅由B的变化引起时,则E=n;当ΔΦ仅由S的变化引起时,则E=n;当ΔΦ由B、S的变化同时引起时,则E=n≠n。
(2)磁通量的变化率是Φt图象上某点切线的斜率。
1.[教材母题] (人教版选修3-2 P17·T1)关于电磁感应,下述说法正确的是什么?
A.穿过线圈的磁通量越大,感应电动势越大。
B.穿过线圈的磁通量为0,感应电动势一定为0。
C.穿过线圈的磁通量的变化越大,感应电动势越大。
D.穿过线圈的磁通量变化越快,感应电动势越大。
[变式子题] 关于法拉第电磁感应定律,下列说法正确的是( )
A.线圈中的磁通量变化越大,线圈中产生的感应电动势就越大
B.线圈中的磁通量变化越快,线圈中产生的感应电动势就越大
C.线圈中的磁通量越大,线圈中产生的感应电动势就越大
D.线圈放在磁场越强的地方,线圈中产生的感应电动势就越大
答案 B
解析 根据法拉第电磁感应定律E=n得,感应电动势的大小跟磁通量的变化率成正比。磁通量变化大,由于不知磁通量的变化时间,故不一定越大,A错误;磁通量变化的快慢用表示,磁通量变化越快,则就大,根据法拉第电磁感应定律知产生的感应电动势就越大,B正确;磁通量Φ越大,但不一定越大,C错误;磁感应强度大的磁场中可能没有磁通量的变化,则感应电动势可能为零,D错误。
2. (2018·榆林模拟)在一空间有方向相反,磁感应强度大小均为B的匀强磁场,如图所示,向外的磁场分布在一半径为a的圆形区域内,向内的磁场分布在除圆形区域外的整个区域,该平面内有一半径为b(b>a)的圆形线圈,线圈平面与磁感应强度方向垂直,线圈与半径为a的圆形区域是同心圆。从某时刻起磁感应强度在Δt时间内均匀减小到,则此过程中该线圈产生的感应电动势大小为( )
A. B.
C. D.
答案 D
解析 线圈内存在两个方向相反的匀强磁场区域,穿过线圈的磁通量变化量为ΔΦ=πB(b2-2a2)-=。根据法拉第电磁感应定律可得线圈中产生的感应电动势的大小为E==,故选D。
3.半径为r的带缺口刚性金属圆环在纸面上固定放置,并处在变化的磁场中,在圆环的缺口两端引出两根导线,分别与两块固定放置的平行金属板连接,两板间距为d,如图甲所示。磁场的方向垂直于纸面,规定垂直纸面向里为正,变化规律如图乙所示。则以下说法正确的是( )
A.第2 s内上极板为正极
B.第3 s内上极板为负极
C.第2 s末两极板之间的电场强度大小为零
D.第4 s末两极板之间的电场强度大小为
答案 A
解析 第2 s内情况:由楞次定律可知,金属板上极板带正电,金属板下极板带负电,故A正确;第3 s内情况:由楞次定律可知,金属板上极板带正电,金属板下极板带负电,故B错误;根据法拉第电磁感应定律可知,第2 s末感应电动势不为零,则两极板之间的电场强度大小不为零,故C错误;由题意可知,第4 s末两极板间的电场强度大小E====,故D错误。考点二 导体切割磁感线产生感应电动势的计算
1.E=Blv的三个特性
(1)正交性:本公式要求磁场为匀强磁场,而且B、l、v三者互相垂直。
(2)有效性:公式中的l为导体棒切割磁感线的有效长度。如图中,导体棒的有效长度为ab间的距离。
(3)相对性:E=Blv中的速度v是导体棒相对磁场的速度,若磁场也在运动,应注意速度间的相对关系。
2.导体棒转动切割磁感线
当导体棒在垂直于磁场的平面内,绕一端以角速度ω匀速转动时,产生的感应电动势为E=Bl=Bl2ω,如图所示。
3.公式E=n与E=Blv的比较
如图所示,一金属弯杆处在磁感应强度大小为B、方向垂直纸面向里的匀强磁场中,已知ab=bc=L,当它以速度v向右平动时,c、a两点间的电势差为( )
A.BLv B.BLvsinθ
C.BLvcosθ D.BLv(1+sinθ)
解析 公式E=BLv中的L应指导体切割磁感线的有效长度,也就是与磁感应强度B和速度v垂直的长度,因此该金属弯杆的有效切割长度为Lsinθ,故感应电动势大小为BLvsinθ,故B正确。
答案 B
方法感悟
解答本题要把握以下两点:
(1)公式E=BLv的应用条件是两两垂直,当有物理量不垂直时,要利用等效法将其转化为两两垂直。
(2)将abc分为两段,ab不切割磁感线,不产生感应电动势,bc切割磁感线但不符合两两垂直,要先进行转化再求解。
1.金属线圈ABC构成一个等腰直角三角形,腰长为a,绕垂直于纸面通过A的轴在纸面内匀速转动,角速度为ω,
如图所示。若加上一个垂直纸面向里的磁感应强度为B的匀强磁场,则B、A间的电势差UBA,B、C间的电势差UBC分别为多少?
答案 Bωa2 Bωa2
解析 AC、BC、AB均绕垂直于纸面通过A的轴以角速度ω匀速转动,△ABC中磁通量不变,所以线圈中没有电流。但当单独考虑每条边时,三边均切割磁感线,均有感应电动势产生,且B点电势大于C点电势和A点电势。则有UBA=EBA=BL=BωL=Bωa2,UCA=ECA=BωL=Bωa2,UBC=UBA-UCA=Bωa2-Bωa2=Bωa2。
2.如图所示,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0。使该线框从静止开始绕过圆心O、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流。现使线框保持图中所示位置,磁感应强度大小随时间线性变化。为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率的大小应为( )
A. B. C. D.
答案 C
解析 设圆的半径为r,当其绕过圆心O的轴匀速转动时,圆弧部分不切割磁感线,不产生感应电动势,而在转过半周的过程中直径只有一半在磁场中切割磁感线,产生的感应电动势E=B0r=B0r·=B0r2ω;当线框不动时,E′=·。由闭合电路欧姆定律得I=,要使I=I′,必须使E=E′,可得=,C正确。
考点三 自感
1.定义:一个线圈中的电流变化时,它所产生的变化的磁场在它本身激发出感应电动势,这种现象称为自感。产生的电动势叫做自感电动势。
2.通电自感和断电自感
3.规律
(1)自感电动势总要阻碍引起自感的原电流的变化,符合楞次定律。
(2)通过线圈的电流不能发生突变,只能缓慢变化。
(3)当线圈中电流变化时,线圈相当于电源;当线圈中电流不变时,线圈相当于导线或电阻。
(4)自感电动势的大小:E=L,自感系数越大,自感现象越明显。自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向。
4.自感中“闪亮”与“不闪亮”问题
1. (多选)线圈通以如图所示的随时间变化的电流,则( )
A.0~t1时间内线圈中的自感电动势最大
B.t1~t2时间内线圈中的自感电动势最大
C.t2~t3时间内线圈中的自感电动势最大
D.t1~t2时间内线圈中的自感电动势为零
答案 CD
解析 线圈中的自感电动势与通入的电流的变化率成正比,即E∝。根据图象分析:0~t1时间内的电流变化率小于t2~t3时间内的电流变化率,t1~t2时间内的电流变化率为零,自感电动势为零,A、B错误,C、D正确。
2. [教材母题] (人教版选修3-2 P25·T3)如图所示,L是自感系数很大的线圈,但其自身的电阻几乎为0。A和B是两个相同的小灯泡。
(1)当开关S由断开变为闭合时,A、B两个灯泡的亮度将如何变化?
(2)当开关S由闭合变为断开时,A、B两个灯泡的亮度又将如何变化?在老师的指导下做一做这个实验,以检验你的预测。
[变式子题] (多选)如图所示,电源的电动势为E,内阻r忽略不计。A、B是两个相同的小灯泡,L是一个自感系数相当大的线圈。以下说法正确的是( )
A.从开关闭合到电路中电流稳定的时间内,A灯立刻亮,且亮度保持稳定
B.从开关闭合到电路中电流稳定的时间内,B灯立刻亮,且亮度保持稳定
C.开关断开后瞬间,A灯闪亮一下再熄灭
D.开关断开后瞬间,电流自右向左通过A灯
答案 AD
解析 开关闭合,A灯立刻亮,因为电源没有内阻,所以A灯两端的电压保持不变,灯泡亮度稳定,故A正确;因为L是一个自感系数相当大的线圈,所以开关闭合时B灯不亮,然后逐渐变亮,最后亮度稳定,故B错误;两个灯泡电阻一样,若L也没有电阻,则开关断开前后A灯的电流相同,不会闪亮;若L有电阻,则通过B的电流小于A的电流,所以A也不会闪亮一下,故C错误;开关断开后瞬间,L产生感应电动势,在回路中通过A灯的电流方向为从右向左,故D正确,故选A、D。
3.(2017·北京高考)图1和图2是演示自感现象的两个电路图,L1和L2为电感线圈。实验时,断开开关S1瞬间,灯A1突然闪亮,随后逐渐变暗;闭合开关S2,灯A2逐渐变亮,而另一个相同的灯A3立即变亮,最终A2与A3的亮度相同。下列说法正确的是( )
A.图1中,A1与L1的电阻值相同
B.图1中,闭合S1,电路稳定后,A1中电流大于L1中电流
C.图2中,变阻器R与L2的电阻值相同
D.图2中,闭合S2瞬间,L2中电流与变阻器R中电流相等
答案 C
解析 图1中,断开开关S1瞬间,L1与灯A1组成闭合回路,L1产生感应电动势阻碍电流的变化,电流逐渐减小,由于灯A1突然闪亮,故断开开关S1之前,通过L1的电流大于通过灯A1的电流,由欧姆定律知,A1的电阻值大于L1的电阻值,A、B错误;图2中,闭合开关S2,电路稳定后A2与A3的亮度相同,又A2与A3相同,由欧姆定律知,变阻器R与L2的电阻值相同,C正确;图2中,闭合S2瞬间,由于L2产生感应电动势阻碍电流的增加,故L2中电流小于变阻器R中电流,D错误。
考点四 涡流、电磁驱动和电磁阻尼
1.涡流现象
(1)涡流:块状金属放在变化的磁场中,或者让它在磁场中运动时,金属块内产生的旋涡状感应电流。
(2)产生原因:金属块内磁通量变化→感应电动势→感应电流。
(3)涡流的利用:冶炼金属的高频感应炉利用涡流产生焦耳热使金属熔化;家用电磁炉也是利用涡流原理制成的。
(4)涡流的减小:各种电动机和变压器中,用涂有绝缘漆的硅钢片叠加成铁芯,以减小涡流。
2.电磁阻尼与电磁驱动的比较
(2017·全国卷Ⅰ)扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌。为了有效隔离外界振动对STM的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图所示。无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及左右振动的衰减最有效的方案是( )
解析 底盘上的紫铜薄板出现扰动时,其扰动方向不确定,在选项C这种情况下,紫铜薄板出现上下或左右扰动时,穿过薄板的磁通量难以改变,不能发生电磁感应现象,没有阻尼效应;在选项B、D这两种情况下,紫铜薄板出现上下扰动时,也没有发生电磁阻尼现象;选项A这种情况下,不管紫铜薄板出现上下或左右扰动时,都发生电磁感应现象,产生电磁阻尼效应,选项A正确。
答案 A
方法感悟
(1)涡流是整块导体发生的电磁感应现象,同样遵守法拉第电磁感应定律,磁场变化越快,导体横截面积越大,导体材料的电阻率越小,形成的涡流就越大。
(2)电磁阻尼是导体棒在磁场中运动产生感应电流,导体棒受到的安培力阻碍导体棒运动的现象。电磁驱动是磁场运动,在导体棒中产生感应电流,导体棒受到安培力的作用,跟随磁场一起运动的现象。
(3)电磁阻尼、电磁驱动现象中安培力的效果阻碍相对运动,应注意电磁驱动中阻碍的结果,导体运动速度要小于磁场的运动速度。
(2015·全国卷Ⅰ)(多选)1824年,法国科学家阿拉果完成了著名的“圆盘实验”。实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示。实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后。下列说法正确的是( )
A.圆盘上产生了感应电动势
B.圆盘内的涡电流产生的磁场导致磁针转动
C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化
D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动
答案 AB
解析 当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,圆盘的半径切割磁感线产生感应电动势和感应电流,选项A正确;圆盘内的涡电流产生的磁场对磁针施加磁场力作用,导致磁针转动,选项B正确;由于圆盘中心正上方悬挂小磁针,在圆盘转动过程中,根据磁针磁场的分布的对称性,穿过整个圆盘的磁通量一直为零,选项C错误;圆盘中的电流并不是自由电子随圆盘一起运动产生的,而是切割磁感线产生了涡电流,涡电流的磁场导致磁针转动,选项D错误。
课后作业
[巩固强化练]
1. 如图所示,由导体棒ab和矩形线框cdef组成的“10”图案在匀强磁场中一起向右匀速平动,匀强磁场的方向垂直线框平面向里,磁感应强度B随时间均匀增大,则下列说法正确的是( )
A.导体棒的a端电势比b端电势高,电势差Uab在逐渐增大
B.导体棒的a端电势比b端电势低,电势差Uab在逐渐增大
C.线框cdef中有顺时针方向的电流,电流大小在逐渐增大
D.线框cdef中有逆时针方向的电流,电流大小在逐渐增大
答案 A
解析 对于导体棒ab,由于磁感应强度B随时间均匀增大,所以Uab=Blv逐渐增大,由右手定则知a端电势高于b端电势,A正确,B错误;对于矩形线框,依题意可知、S都不变,由法拉第电磁感应定律E=·S知线框中产生的感应电动势大小不变,由闭合电路欧姆定律知线框中的感应电流大小不变,C、D错误。
2. A、B两闭合圆形导线环用相同规格的导线制成,它们的半径之比rA∶rB=2∶1,在两导线环包围的空间内存在一正方形边界的匀强磁场区域,磁场方向垂直于两导线环所在的平面,如图所示。当磁场的磁感应强度随时间均匀增大的过程中,流过两导线环的感应电流大小之比为( )
A.=1 B.=2 C.= D.=
答案 D
解析 匀强磁场的磁感应强度随时间均匀增大,即不变,E==·S(S为磁场区域面积),由于及S均相同,可得两导线环产生的感应电动势相等,即=1,I=,R=ρ(S′为导线的横截面积),l=2πr,所以====。D正确。
3. 如图,一匝数为N、面积为S、总电阻为R的圆形线圈,放在磁感应强度为B的匀强磁场中,磁场方向垂直于线圈平面。当线圈由原位置翻转180°的过程中,通过线圈导线横截面的电荷量为( )
A. B. C. D.
答案 B
解析 由法拉第电磁感应定律E=N,可求出感应电动势的大小,再由闭合电路欧姆定律I=,可求出感应电流的大小,根据电荷量公式q=IΔt,可得q=N。由于开始线圈平面与磁场垂直,现把线圈翻转180°,则有ΔΦ=2BS,所以由上述公式可得通过线圈导线横截面的电荷量q=,B正确,A、C、D错误。
4. (多选)如图是生产中常用的一种延时继电器的示意图,铁芯上有两个线圈A和B,线圈A跟电源连接,线圈B的两端接在一起,构成一个闭合回路。下列说法中正确的是( )
A.闭合开关S时,B中产生图示方向的感应电流
B.闭合开关S时,B中产生与图示方向相反的感应电流
C.断开开关S时,电磁铁会继续吸住衔铁D一小段时间
D.断开开关S时,弹簧K立即将衔铁D拉起
答案 BC
解析 闭合开关S时,由楞次定律知B中产生与图示方向相反的感应电流,A错误,B正确;断开开关S时,B中磁通量变化产生感应电流,电磁铁会继续吸住衔铁D一小段时间,C正确,D错误。
5. (多选)如图所示,L是自感系数很大的、用铜导线绕成的线圈,其电阻可以忽略不计,开关S原来是闭合的。当开关S断开瞬间,则( )
A.L中的电流方向不变
B.灯泡D要过一会儿才熄灭
C.灯泡D立即熄灭
D.电容器将放电
答案 AC
解析 S断开时,由于自感电动势,L中的电流沿原方向缓慢减小,对C充电(C两端电压原来为零),而电流不通过灯泡D,故灯泡立即熄灭,A、C正确。
6.在半径为r、电阻为R的圆形导线框内,以竖直直径为界,左、右两侧分别存在着方向如图甲所示的匀强磁场。以垂直纸面向外的方向为磁场的正方向,两部分磁场的磁感应强度B随时间t的变化规律如图乙所示。则0~t0时间内,导线框中( )
A.没有感应电流
B.感应电流方向为逆时针
C.感应电流大小为
D.感应电流大小为
答案 C
解析 根据楞次定律可知,导线框左边产生的感应电流沿顺时针方向,导线框右边产生的感应电流也沿顺时针方向,则整个导线框中的感应电流沿顺时针方向,A、B错误;由法拉第电磁感应定律可知,导线框中产生的感应电动势为导线框左、右两边产生的感应电动势之和,即E=2×S=2×=,由闭合电路欧姆定律可得,感应电流大小为I==,C正确,D错误。
7. 如图所示,半径为R的圆形导轨处在垂直于圆平面的匀强磁场中,磁场的磁感应强度为B,方向垂直于纸面向里。一根长度略大于导轨直径的导体棒MN以速率v在圆导轨上从左端滑到右端,电路中的定值电阻为r,其余电阻不计。导体棒与圆形导轨接触良好。求:
(1)在滑动过程中通过电阻r上的电流的平均值;
(2)MN从左端到右端的整个过程中,通过r的电荷量;
(3)当MN通过圆导轨中心时,通过r的电流是多少?
答案 (1) (2) (3)
解析 导体棒从左向右滑动的过程中,切割磁感线产生感应电动势,对电阻r供电。
(1)计算平均电流,应该用法拉第电磁感应定律,先求出平均感应电动势。
整个过程磁通量的变化为ΔΦ=BS=BπR2,
所用的时间Δt=,
代入公式=,
得平均电流为==。
(2)电荷量的运算应该用平均电流,q=Δt=。
(3)当MN通过圆形导轨中心时,切割磁感线的有效长度最大,为l=2R,根据E=Blv得E=B·2Rv,此时通过r的电流为I==。
[真题模拟练]
8.(2018·全国卷Ⅰ) 如图,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中点,O为圆心。轨道的电阻忽略不计。OM是有一定电阻、可绕O转动的金属杆,M端位于PQS上,OM与轨道接触良好。空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B。现使OM从OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B′(过程Ⅱ)。在过程Ⅰ、Ⅱ中,流过OM的电荷量相等,则等于( )
A. B. C. D.2
答案 B
解析 通过导体横截面的电荷量为:q=·Δt=·Δt=n,过程Ⅰ流过OM的电荷量为:q1=;过程Ⅱ流过OM的电荷量:q2=,依题意有:q1=q2,即:B·πr2=(B′-B)·πr2,解得:=,正确答案为B。
9.(2018·全国卷Ⅲ)(多选)如图a,在同一平面内固定有一长直导线PQ和一导线框R,R在PQ的右侧。导线PQ中通有正弦交流电流i,i的变化如图b所示,规定从Q到P为电流的正方向。导线框R中的感应电动势( )
A.在t=时为零
B.在t=时改变方向
C.在t=时最大,且沿顺时针方向
D.在t=T时最大,且沿顺时针方向
答案 AC
解析 由图b可知,导线PQ中电流在t=时达到最大值,变化率为零,导线框R中磁通量变化率为零,根据法拉第电磁感应定律,在t=时导线框中产生的感应电动势为零,A正确;在t=时,导线PQ中电流图象斜率正负不变,导致导线框R中磁通量变化率的正负不变,根据楞次定律,所以在t=时,导线框中产生的感应电动势方向不变,B错误;由于在t=时,导线PQ中电流图象斜率最大,电流变化率最大,导致导线框R中磁通量变化率最大,根据法拉第电磁感应定律,在t=时导线框中产生的感应电动势最大,由楞次定律可判断出感应电动势的方向为顺时针方向,C正确;由楞次定律可判断出在t=T时感应电动势的方向为逆时针方向,D错误。
10.(2016·全国卷Ⅱ) (多选)法拉第圆盘发电机的示意图如图所示。铜圆盘安装在竖直的铜轴上,两铜片P、Q分别与圆盘的边缘和铜轴接触。圆盘处于方向竖直向上的匀强磁场B中。圆盘旋转时,关于流过电阻R的电流,下列说法正确的是( )
A.若圆盘转动的角速度恒定,则电流大小恒定
B.若从上向下看,圆盘顺时针转动,则电流沿a到b的方向流动
C.若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化
D.若圆盘转动的角速度变为原来的2倍,则电流在R上的热功率也变为原来的2倍
答案 AB
解析 设圆盘的半径为r,圆盘转动的角速度为ω,则圆盘转动产生的电动势为E=Bl=Br·=Bωr2,可知,转动的角速度恒定,电动势恒定,电流恒定,A正确;根据右手定则可知,从上向下看,圆盘顺时针转动,圆盘中电流由边缘指向圆心,即电流沿a到b的方向流动,B正确;圆盘转动方向不变,产生的电流方向不变,C错误;若圆盘转动的角速度变为原来的2倍,则电动势变为原来的2倍,电流变为原来的2倍,由P=I2R可知,电阻R上的热功率变为原来的4倍,D错误。
11.(2018·潍坊高三统考)(多选) 如图所示,等边三角形导体框abc边长为l,bd⊥ac,导体框绕轴bd以角速度ω匀速转动,导体框所在空间有竖直向上、磁感应强度为B的匀强磁场。下列说法正确的是( )
A.导体框中无感应电流
B.导体框中产生正弦交变电流
C.a、d两点间电势差为0
D.a、d两点间电压为Bωl2
答案 AD
解析 由于导体框平面始终与磁场方向平行,则穿过导体框的磁通量始终为零,即导体框中无感应电流,A正确,B错误;由导体棒在磁场中转动切割磁感线产生感应电动势可知,a、d两点间的电压为E=Bω2=Bωl2,C错误,D正确。
12.(2018·潍坊高三统考) 如图所示,平行金属导轨宽度L=1 m,固定在水平面内,左端A、C间接有R=4 Ω的电阻,金属棒DE质量m=0.36 kg,电阻r=1 Ω,垂直导轨放置,金属棒与导轨间的动摩擦因数为μ=0.5,到AC的距离x=1.5 m。匀强磁场与水平面成37°角斜向左上方,与金属棒垂直,磁感应强度随时间t变化的规律是B=(1+2t) T。设最大静摩擦力等于滑动摩擦力,不计导轨电阻,sin37°=0.6,cos37°=0.8,g=10 m/s2,则经多长时间金属棒开始滑动?
答案 12 s
解析 回路中的感应电动势
E=Lxsin37°
感应电流I=
对金属棒受力分析,有
FA=BIL
FAsin37°=μN
N=mg+FAcos37°
又B=(1+2t) T,
联立解得t=12 s。
相关资料
更多