【期末复习】2020年八年级数学上册 期末复习专题 全等三角形解答题 专练(含答案)
展开【期末复习】2020年八年级数学上册 期末复习专题
全等三角形解答题 专练
1.如图,已知AB=AD,AC=AE,∠BAD=∠CAE=90°,试判断CD与BE的大小关系和位置关系,并进行证明.
2.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.
3.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B
4.已知:在△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且BD⊥AE于D,
CE⊥AE于E.
(1)当直线AE处于如图①的位置时,有BD=DE+CE,请说明理由;
(2)当直线AE处于如图②的位置时,则BD、DE、CE的关系如何?请说明理由;
(3)归纳(1)、(2),请用简洁的语言表达BD、DE、CE之间的关系.
5.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.
(1)求证:BF=2AE;
(2)若CD=1,求AD的长.
6.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.
(1)求证:CF=DG;
(2)求出∠FHG的度数.
7.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.
8.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.
(1)求证:△BCE≌△DCF;
(2)求证:AB+AD=2AE.
9.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.
10.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,求∠CAB和∠CAP的度数.
11.如图,△ABC中,∠BAC=900,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.
(1)求证:BE=CF;
(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.
12.如图,在△ABC中,∠ABC=60゜,AD、CE分别平分∠BAC、∠ACB,AD、CE交于O.
(1)求∠AOC的度数;
(2)求证:AC=AE+CD.
13.如图1,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形,并将添加的全等条件标注在图上.
请你参考这个作全等三角形的方法,解答下列问题:
(1)如图2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC和∠BCA的平分线,AD、CE相交于点F,求∠EFA的度数;
(2)在(1)的条件下,请判断FE与FD之间的数量关系,并说明理由;
(3)如图3,在△ABC中,如果∠ACB不是直角,而( 1 )中的其他条件不变,试问在(2)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
14.如图,AD是△ABC的角平分线,点F,E分别在边AC,AB上,且FD=BD.
(1)求证:∠B+∠AFD=180°;
(2)如果∠B+2∠DEA=180°,探究线段AE,AF,FD之间满足的等量关系,并证明.
15.(1)如图(1)在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE;
(2)如图(2)将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请给出证明;若不成立,请说明理由.
参考答案
1.证明:CD=BE,CD⊥BE,理由如下:
因为∠BAD=∠CAE=90°,所以∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠DAC.
因为,所以△BAE≌△DAC(SAS).所以BE=DC,∠BEA=∠DCA.
如图,设AE与CD相交于点F,因为∠ACF+∠AFC=90°,∠AFC=∠DFE,
所以∠BEA+∠DFE=90°.即CD⊥BE.
2.证明:因为∠CEB=∠CAB=90°所以:ABCE四点共元
又因为:∠ABE=∠CBE 所以:AE=CE 所以:∠ECA=∠EAC
取线段BD的中点G,连接AG,则:AG=BG=DG
所以:∠GAB=∠ABG
而:∠ECA=∠GBA 所以:∠ECA=∠EAC=∠GBA=∠GAB
而:AC=AB 所以:△AEC≌△AGB
所以:EC=BG=DG 所以:BD=2CE
3.证明:延长AC至E,使CE=CD,连接ED
∵AB=AC+CD ∴AE=AB
∵AD平分∠CAB ∴∠EAD=∠BAD
∴AE=AB ∠EAD=∠BAD AD=AD ∴△ADE≌△ADB
∴∠E=∠B 且∠ACD=∠E+∠CDE,CE=CD
∴∠ACD=∠E+∠CDE=2∠E=2∠B
即∠C=2∠B
4.解:(1)在△ABC中,∠BAC=90°,∴∠BAD=90°-∠EAC。
又∵BD⊥AE于D,CE⊥AE于E,∴∠BAD=90°-∠EAC=∠ACE。
而AB=AC,于是△ABD全等于△CAE,BD=AE,AD=CE。因此,BD=AE=AD+DE=DE+CE。
(2)DE=BD+CE。
理由:与(1)同理,可得△ABD全等于△CAE,于是BD=AE,CE=AD,DE=AE+AD=BD+CE。
(3)当直线AE与线段BC有交点时,BD=DE+CE;
当直线AE交于线段BC的延长线上时,DE=BD+CE。
5. (1)证明:∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形,∴AD=BD,
∵BE⊥AC,AD⊥BC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,∴∠CAD=∠CBE,
在△ADC和△BDF中,,∴△ADC≌△BDF(ASA),∴BF=AC,
∵AB=BC,BE⊥AC,∴AC=2AE,∴BF=2AE;
(2)解:∵△ADC≌△BDF,∴DF=CD=1,在Rt△CDF中,CF==,
∵BE⊥AC,AE=EC,∴AF=CF=,∴AD=AF+DF=1+.
6.(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),
∴CF=DG;
(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,
又∵∠CFB=∠DFH,
又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,
△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,
∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.
7.证明:过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F,
∵BD平分∠ABC,∴DE=DF,∠DEC=∠F=90°,
在RtCDE和Rt△ADF中,,∴Rt△CDE≌Rt△ADF(HL),
∴∠FAD=∠C,∴∠BAD+∠C=∠BAD+∠FAD=180°.
8. (1)证明:∵AC是角平分线,CE⊥AB于E,CF⊥AD于F,∴CE=CF,∠F=∠CEB=90°,
在Rt△BCE和Rt△DCF中,∴△BCE≌△DCF;
(2)解:∵CE⊥AB于E,CF⊥AD于F,∴∠F=∠CEA=90°,
在Rt△FAC和Rt△EAC中,,∴Rt△FAC≌Rt△EAC,∴AF=AE,
∵△BCE≌△DCF,∴BE=DF,∴AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.
9.证明:(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,
∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF,
在△ABF和△AEC中,∵,∴△ABF≌△AEC(SAS),∴EC=BF;
(2)如图,根据(1),△ABF≌△AEC,∴∠AEC=∠ABF,
∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,
∵∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,
在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°,所以EC⊥BF.
10.答案为:80°,50°;
11.略
12.解:如图,在AC上截取AF=AE,连接OF
∵AD平分∠BAC,∴∠BAD=∠CAD,
在△AOE和△AOF中∴△AOE≌△AOF(SAS),∴∠AOE=∠AOF,
∵∠ABC=60°,AD、CE分别平分∠BAC,∠ACB,∴∠AOC=120°;
(2)∵∠AOC=120°,∴∠AOE=60°,∴∠AOF=∠COD=60°=∠COF,
在△COF和△COD中,∴△COF≌△COD(ASA)
∴CF=CD,∴AC=AF+CF=AE+CD.
13.解:(1)如图2,∵∠ACB=90°,∠B=60°.∴∠BAC=30°.
∵AD、CE分别是∠BAC和∠BCA的平分线,
∴∠DAC=0.5∠BAC=15°,∠ECA=0.5∠ACB=45°.
∴∠EFA=∠DAC+∠ECA=15°+45°=60°.
(2)FE=FD.如图2,在AC上截取AG=AE,连接FG.
∵AD是∠BAC的平分线,∴∠EAF=∠GAF,
在△EAF和△GAF中∵∴△EAF≌△GAF(SAS),
∴FE=FG,∠EFA=∠GFA=60°.∴∠GFC=180°﹣60°﹣60°=60°.
又∵∠DFC=∠EFA=60°,∴∠DFC=∠GFC.
在△FDC和△FGC中∵∴△FDC≌△FGC(ASA),∴FD=FG.∴FE=FD.
(3)(2)中的结论FE=FD仍然成立.同(2)可得△EAF≌△HAF,
∴FE=FH,∠EFA=∠HFA.
又由(1)知∠FAC=0.5∠BAC,∠FCA=0.5∠ACB,
∴∠FAC+∠FCA=0.5(∠BAC+∠ACB)=0.5=60°.
∴∠AFC=180°﹣(∠FAC+∠FCA)=120°.
∴∠EFA=∠HFA=180°﹣120°=60°.
同(2)可得△FDC≌△FHC,∴FD=FH.∴FE=FD.
14.解:(1)在AB上截取AG=AF.
∵AD是△ABC的角平分线,∴∠FAD=∠DAG.
在△AFD和△AGD中,∴△AFD≌△AGD(SAS),∴∠AFD=∠AGD,FD=GD,
∵FD=BD,∴BD=GD,∴∠DGB=∠B,∴∠B+∠AFD=∠DGB+∠AGD=180°;
(2)AE=AF+FD.过点E作∠DEH=∠DEA,点H在BC上.
∵∠B+2∠DEA=180°,∴∠HEB=∠B.
∵∠B+∠AFD=180°,∴∠AFD=∠AGD=∠GEH,
∴GD∥EH.∴∠GDE=∠DEH=∠DEG.∴GD=GE.
又∵AF=AG,∴AE=AG+GE=AF+FD.
15.证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,
∵∠BAC=90°,∴∠BAD+∠CAE=90°,
∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,
∵在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(2)∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,
∴∠CAE=∠ABD,
∵在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE.