![2020年内蒙古鄂尔多斯市中考数学试卷 解析版01](http://img-preview.51jiaoxi.com/2/3/5682109/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020年内蒙古鄂尔多斯市中考数学试卷 解析版02](http://img-preview.51jiaoxi.com/2/3/5682109/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020年内蒙古鄂尔多斯市中考数学试卷 解析版03](http://img-preview.51jiaoxi.com/2/3/5682109/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
还剩31页未读,
继续阅读
2020年内蒙古鄂尔多斯市中考数学试卷 解析版
展开
2020年内蒙古鄂尔多斯市中考数学试卷
一、单项选择题(本大题共10小题,每小题3分,共30分)
1.(3分)实数﹣的绝对值是( )
A. B.﹣ C.﹣ D.
2.(3分)已知某物体的三视图如图所示,那么与它对应的物体是( )
A. B. C. D.
3.(3分)函数y=中自变量x的取值范围在数轴上表示正确的是( )
A. B.
C. D.
4.(3分)下列计算错误的是( )
A.(﹣3ab2)2=9a2b4 B.﹣6a3b÷3ab=﹣2a2
C.(a2)3﹣(﹣a3)2=0 D.(x+1)2=x2+1
5.(3分)将三角尺按如图所示放置在一张矩形纸片上,∠EGF=90°,∠FEG=30°,∠1=125°,则∠BFG的大小为( )
A.125° B.115° C.110° D.120°
6.(3分)一次数学测试,某小组5名同学的成绩统计如表(有两个数据被遮盖):
组员
甲
乙
丙
丁
戊
平均成绩
众数
得分
77
81
■
80
82
80
■
则被遮盖的两个数据依次是( )
A.81,80 B.80,2 C.81,2 D.80,80
7.(3分)在四边形ABCD中,AD∥BC,∠D=90°,AD=8,BC=6,分别以A,C为圆心,大于AC的长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O,若点O是AC的中点,则CD的长为( )
A.4 B.2 C.6 D.8
8.(3分)下列说法正确的是( )
①的值大于;
②正六边形的内角和是720°,它的边长等于半径;
③从一副扑克牌中随机抽取一张,它是黑桃的概率是;
④甲、乙两人各进行了10次射击测试,他们的平均成绩相同,方差分别是s2甲=1.3,s2乙=1.1,则乙的射击成绩比甲稳定.
A.①②③④ B.①②④ C.①④ D.②③
9.(3分)如图,四边形OAA1B1是边长为1的正方形,以对角线OA1为边作第二个正方形OA1A2B2,连接AA2,得到△AA1A2;再以对角线OA2为边作第三个正方形OA2A3B3,连接A1A3,得到△A1A2A3,再以对角线OA3为边作第四个正方形OA2A4B4,连接A2A4,得到△A2A3A4,…,设△AA1A2,△A1A2A3,△A2A3A4,…,的面积分别为S1,S2,S3,…,如此下去,则S2020的值为( )
A. B.22018 C.22018+ D.1010
10.(3分)鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆,离入口处的路程y(米)与时间x(分)的函数关系如图2所示,下列结论错误的是( )
A.第一班车离入口处的距离y(米)与时间x(分)的解析式为y=200x﹣4000(20≤x≤38)
B.第一班车从入口处到达花鸟馆所需的时间为10分钟
C.小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车
D.小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)
二、填空题(本大题共6题,每题3分,共18分)
11.(3分)截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为 .
12.(3分)计算:+()﹣2﹣3tan60°+(π)0= .
13.(3分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠BCD=30°,CD=2,则阴影部分面积S阴影= .
14.(3分)如图,平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为6,4,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为 .
15.(3分)如图,在等边△ABC中,AB=6,点D,E分别在边BC,AC上,且BD=CE,连接AD,BE交于点F,连接CF,则CF的最小值是 .
16.(3分)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到,若过点E作EH⊥AC,H为垂足,则有以下结论:
①点M位置变化,使得∠DHC=60°时,2BE=DM;
②无论点M运动到何处,都有DM=HM;
③在点M的运动过程中,四边形CEMD可能成为菱形;
④无论点M运动到何处,∠CHM一定大于135°.
以上结论正确的有 (把所有正确结论的序号都填上).
三、解答题(本大题共8题,共72分.解答时写出必要的文字说明、演算步骤或推理过程)
17.(8分)(1)解不等式组,并求出该不等式组的最小整数解.
(2)先化简,再求值:(﹣)÷,其中a满足a2+2a﹣15=0.
18.(9分)“学而时习之,不亦说乎?”古人把经常复习当作是一种乐趣.某校为了解九年级(一)班学生每周的复习情况,班长对该班学生每周的复习时间进行了调查,复习时间四舍五入后只有4种:1小时,2小时,3小时,4小时,已知该班共有50人,根据调查结果,制作了两幅不完整的统计图表,该班女生一周的复习时间数据(单位:小时)如下:
1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4
九年级(一)班女生一周复习时间频数分布表
复习时间
频数(学生人数)
1小时
3
2小时
a
3小时
4
4小时
6
(1)统计表中a= ,该班女生一周复习时间的中位数为 小时;
(2)扇形统计图中,该班男生一周复习时间为4小时所对应圆心角的度数为 °;
(3)该校九年级共有600名学生,通过计算估计一周复习时间为4小时的学生有多少名?
(4)在该班复习时间为4小时的女生中,选择其中四名分别记为A,B,C.,D,为了培养更多学生对复习的兴趣,随机从该四名女生中选取两名进行班会演讲,请用树状图或者列表法求恰好选中B和D的概率.
19.(8分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求函数y=kx+b和y=的表达式;
(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.
20.(8分)图1是挂墙式淋浴花洒的实物图,图2是抽象出来的几何图形.为使身高175cm的人能方便地淋浴,应当使旋转头固定在墙上的某个位置O,花洒的最高点B与人的头顶的铅垂距离为15cm,已知龙头手柄OA长为10cm,花洒直径AB是8cm,龙头手柄与墙面的较小夹角∠COA=26°,∠OAB=146°,则安装时,旋转头的固定点O与地面的距离应为多少?(计算结果精确到1cm,参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)
21.(9分)我们知道,顶点坐标为(h,k)的抛物线的解析式为y=a(x﹣h)2+k(a≠0).今后我们还会学到,圆心坐标为(a,b),半径为r的圆的方程(x﹣a)2+(y﹣b)2=r2,如:圆心为P(﹣2,1),半径为3的圆的方程为(x+2)2+(y﹣1)2=9.
(1)以M(﹣3,﹣1)为圆心,为半径的圆的方程为 .
(2)如图,以B(﹣3,0)为圆心的圆与y轴相切于原点,C是⊙B上一点,连接OC,作BD⊥OC,垂足为D,延长BD交y轴于点E,已知sin∠AOC=.
①连接EC,证明:EC是⊙B的切线;
②在BE上是否存在一点Q,使QB=QC=QE=QO?若存在,求点Q的坐标,并写出以Q为圆心,以QB为半径的⊙Q的方程;若不存在,请说明理由.
22.(8分)某水果店将标价为10元/斤的某种水果.经过两次降价后,价格为8.1元/斤,并且两次降价的百分率相同.
(1)求该水果每次降价的百分率;
(2)从第二次降价的第1天算起,第x天(x为整数)的销量及储藏和损耗费用的相关信息如下表所示:
时间(天)
x
销量(斤)
120﹣x
储藏和损耗费用(元)
3x2﹣64x+400
已知该水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<10)之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少?
23.(10分)(1)【操作发现】
如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.
①请按要求画图:将△ABC绕点A顺时针方向旋转90°,点B的对应点为点B′,点C的对应点为点C′.连接BB′;
②在①中所画图形中,∠AB′B= °.
(2)【问题解决】
如图2,在Rt△ABC中,BC=1,∠C=90°,延长CA到D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE,连接DE,求∠ADE的度数.
(3)【拓展延伸】
如图3,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=1,CD=3,AD=kAB(k为常数),求BD的长(用含k的式子表示).
24.(12分)如图1,抛物线y=x2+bx+c交x轴于A,B两点,其中点A的坐标为(1,0),与y轴交于点C(0,﹣3).
(1)求抛物线的函数解析式;
(2)点D为y轴上一点,如果直线BD与直线BC的夹角为15°,求线段CD的长度;
(3)如图2,连接AC,点P在抛物线上,且满足∠PAB=2∠ACO,求点P的坐标.
2020年内蒙古鄂尔多斯市中考数学试卷
参考答案与试题解析
一、单项选择题(本大题共10小题,每小题3分,共30分)
1.(3分)实数﹣的绝对值是( )
A. B.﹣ C.﹣ D.
【分析】直接利用绝对值的性质分析得出答案.
【解答】解:实数﹣的绝对值是:.
故选:A.
2.(3分)已知某物体的三视图如图所示,那么与它对应的物体是( )
A. B. C. D.
【分析】该几何体是下面是长方体,上面是一个圆柱体,且长方体的宽与圆柱底面直径相等,从而得出答案.
【解答】解:由三视图知,该几何体是下面是长方体,上面是一个圆柱体,且长方体的宽与圆柱底面直径相等,
符合这一条件的是C选项几何体,
故选:C.
3.(3分)函数y=中自变量x的取值范围在数轴上表示正确的是( )
A. B.
C. D.
【分析】根据二次根式有意义的条件可得x+3≥0,再解即可.
【解答】解:由题意得:x+3≥0,
解得:x≥﹣3,
在数轴上表示为,
故选:C.
4.(3分)下列计算错误的是( )
A.(﹣3ab2)2=9a2b4 B.﹣6a3b÷3ab=﹣2a2
C.(a2)3﹣(﹣a3)2=0 D.(x+1)2=x2+1
【分析】直接利用积的乘方运算法则以及整式的除法运算法则、完全平方公式分别化简得出答案.
【解答】解:A、(﹣3ab2)2=9a2b4,原式计算正确,不合题意;
B、﹣6a3b÷3ab=﹣2a2,原式计算正确,不合题意;
C、(a2)3﹣(﹣a3)2=0,原式计算正确,不合题意;
D、(x+1)2=x2++2x+1,原式计算错误,符合题意.
故选:D.
5.(3分)将三角尺按如图所示放置在一张矩形纸片上,∠EGF=90°,∠FEG=30°,∠1=125°,则∠BFG的大小为( )
A.125° B.115° C.110° D.120°
【分析】根据矩形得出AD∥BC,根据平行线的性质得出∠1+∠BFE=180°,求出∠BFE,根据三角形内角和定理求出∠EFG,即可求出答案.
【解答】解:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠1+∠BFE=180°,
∵∠1=125°,
∴∠BFE=55°,
∵在△EGF中,∠EGF=90°,∠FEG=30°,
∴∠EFG=180°﹣∠EGF﹣∠FEG=60°,
∴∠BFG=∠BFE+∠EFG=55°+60°=115°,
故选:B.
6.(3分)一次数学测试,某小组5名同学的成绩统计如表(有两个数据被遮盖):
组员
甲
乙
丙
丁
戊
平均成绩
众数
得分
77
81
■
80
82
80
■
则被遮盖的两个数据依次是( )
A.81,80 B.80,2 C.81,2 D.80,80
【分析】设丙的成绩为x,根据算术平均数的定义列出关于x的方程,解之求出x的值,据此可得第1个被遮盖的数据,再利用众数的定义可得第2个被遮盖的数据,从而得出答案.
【解答】解:设丙的成绩为x,
则=80,
解得x=80,
∴丙的成绩为80,
在这5名学生的成绩中80出现次数最多,
所以众数为80,
所以被遮盖的两个数据依次是80,80,
故选:D.
7.(3分)在四边形ABCD中,AD∥BC,∠D=90°,AD=8,BC=6,分别以A,C为圆心,大于AC的长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O,若点O是AC的中点,则CD的长为( )
A.4 B.2 C.6 D.8
【分析】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出AF=FC.再根据ASA证明△FOA≌△BOC,那么AF=BC=6,等量代换得到FC=AF=6,利用线段的和差关系求出FD=AD﹣AF=2.然后在Rt△FDC中利用勾股定理即可求出CD的长.
【解答】解:如图,连接FC,
由题可得,点E和点O在AC的垂直平分线上,
∴EO垂直平分AC,
∴AF=FC,
∵AD∥BC,
∴∠FAO=∠BCO,
在△FOA与△BOC中,
,
∴△FOA≌△BOC(ASA),
∴AF=BC=6,
∴FC=AF=6,FD=AD﹣AF=2.
在△FDC中,∵∠D=90°,
∴CD2+DF2=FC2,
即CD2+22=62,
解得CD=.
故选:A.
8.(3分)下列说法正确的是( )
①的值大于;
②正六边形的内角和是720°,它的边长等于半径;
③从一副扑克牌中随机抽取一张,它是黑桃的概率是;
④甲、乙两人各进行了10次射击测试,他们的平均成绩相同,方差分别是s2甲=1.3,s2乙=1.1,则乙的射击成绩比甲稳定.
A.①②③④ B.①②④ C.①④ D.②③
【分析】分别根据黄金数的近似值、多边形的内角和与半径的定义与性质、概率公式、方差的意义分别判断可得.
【解答】解:①的值约为0.618,大于,此说法正确;
②正六边形的内角和是720°,它的边长等于半径,此说法正确;
③从一副扑克牌中随机抽取一张,它是黑桃的概率是,此说法错误;
④∵s2甲=1.3,s2乙=1.1,∴s2甲>s2乙,故乙的射击成绩比甲稳定,此说法正确;
故选:B.
9.(3分)如图,四边形OAA1B1是边长为1的正方形,以对角线OA1为边作第二个正方形OA1A2B2,连接AA2,得到△AA1A2;再以对角线OA2为边作第三个正方形OA2A3B3,连接A1A3,得到△A1A2A3,再以对角线OA3为边作第四个正方形OA2A4B4,连接A2A4,得到△A2A3A4,…,设△AA1A2,△A1A2A3,△A2A3A4,…,的面积分别为S1,S2,S3,…,如此下去,则S2020的值为( )
A. B.22018 C.22018+ D.1010
【分析】首先求出S1、S2、S3,然后猜测命题中隐含的数学规律,即可解决问题.
【解答】解:∵四边形OAA1B1是正方形,
∴OA=AA1=A1B1=1,
∴S1=1×1=,
∵∠OAA1=90°,
∴OA12=12+12=2,
∴OA2=A2A3=2,
∴S2=2×1=1,
同理可求:S3=2×2=2,S4=4…,
∴Sn=2n﹣2,
∴S2020=22018,
故选:B.
10.(3分)鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆,离入口处的路程y(米)与时间x(分)的函数关系如图2所示,下列结论错误的是( )
A.第一班车离入口处的距离y(米)与时间x(分)的解析式为y=200x﹣4000(20≤x≤38)
B.第一班车从入口处到达花鸟馆所需的时间为10分钟
C.小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车
D.小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)
【分析】设y=kx+b,运用待定系数法求解即可得出第一班车离入口处的距离y(米)与时间x(分)的解析式;把y=2500代入函数解析式即可求出第一班车从入口处到达花鸟馆所需的时间;设小聪坐上了第n班车,30﹣25+10(n﹣1)≥40,解得n≥4.5,可得小聪坐上了第5班车,再根据“路程、速度与时间的关系”解答即可.
【解答】解:由题意得,可设第一班车离入口处的距离y(米)与时间x(分)的解析式为:y=kx+b(k≠0),
把(20,0),(38,3600)代入y=kx+b,得,解得,
∴第一班车离入口处的路程y(米)与时间x(分)的函数表达为y=200x﹣4000(20≤x≤38);
故选项A不合题意;
把y=2000代入y=200x﹣4000,解得x=30,
30﹣20=10(分),
∴第一班车从入口处到达塔林所需时间10分钟;
故选项B不合题意;
设小聪坐上了第n班车,则
30﹣25+10(n﹣1)≥40,解得n≥4.5,
∴小聪坐上了第5班车,
故选项C符合题意;
等车的时间为5分钟,坐班车所需时间为:1600÷200=8(分),
步行所需时间:1600÷(2000÷25)=20(分),
20﹣(8+5)=7(分),
∴比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟.
故选项D不合题意.
故选:C.
二、填空题(本大题共6题,每题3分,共18分)
11.(3分)截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为 1.051×107. .
【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.
【解答】解:1051万=10510000=1.051×107.
故答案为:1.051×107.
12.(3分)计算:+()﹣2﹣3tan60°+(π)0= 10 .
【分析】直接利用零指数幂的性质以及特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.
【解答】解:原式=3+9﹣3+1
=10.
故答案为:10.
13.(3分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠BCD=30°,CD=2,则阴影部分面积S阴影= .
【分析】连接OC.证明OC∥BD,推出S阴=S扇形OBD即可解决问题.
【解答】解:连接OC.
∵AB⊥CD,
∴=,CE=DE=,
∴∠COD=∠BOD,
∵∠BOD=2∠BCD=60°,
∴∠COB=60°,
∵OC=OB=OD,
∴△OBC,△OBD都是等边三角形,
∴OC=BC=BD=OD,
∴四边形OCBD是菱形,
∴OC∥BD,
∴S△BDC=S△BOD,
∴S阴=S扇形OBD,
∵OD==2,
∴S阴==,
故答案为.
14.(3分)如图,平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为6,4,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为 12 .
【分析】过点A作x轴的垂线,交CB的延长线于点E,根据A,B两点的纵坐标分别为6,4,可得出横坐标,即可表示AE,BE的长,根据菱形的面积为2,求得AE的长,在Rt△AEB中,计算BE的长,列方程即可得出k的值.
【解答】解:过点A作x轴的垂线,交CB的延长线于点E,
∵BC∥x轴,
∴AE⊥BC,
∵A,B两点在反比例函数y=(x>0)的图象,且纵坐标分别为6,4,
∴A(,6),B(,4),
∴AE=2,BE=﹣=,
∵菱形ABCD的面积为2,
∴BC×AE=2,即BC=,
∴AB=BC=,
在Rt△AEB中,BE===1,
∴k=1,
∴k=12.
故答案为12.
15.(3分)如图,在等边△ABC中,AB=6,点D,E分别在边BC,AC上,且BD=CE,连接AD,BE交于点F,连接CF,则CF的最小值是 2 .
【分析】首先证明∠AFB=120°,推出点F的运动轨迹是O为圆心,OA为半径的弧上运动(∠AOB=120°,OA=2),连接OC交⊙O于N,当点F与N重合时,CF的值最小.
【解答】解:如图,∵△ABC是等边三角形,
∴AB=BC=AC,∠ABC=∠BAC=∠BCE=60°,
∵BD=CE,
∴△ABD≌△BCE(SAS)
∴∠BAD=∠CBE,
又∵∠AFE=∠BAD+∠ABE,
∴∠AFE=∠CBE+∠ABE=∠ABC,
∴∠AFE=60°,
∴∠AFB=120°,
∴点F的运动轨迹是O为圆心,OA为半径的弧上运动(∠AOB=120°,OA=2),
连接OC交⊙O于N,当点F与N重合时,CF的值最小,最小值=OC﹣ON=4﹣2=2.
故答案为2.
16.(3分)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到,若过点E作EH⊥AC,H为垂足,则有以下结论:
①点M位置变化,使得∠DHC=60°时,2BE=DM;
②无论点M运动到何处,都有DM=HM;
③在点M的运动过程中,四边形CEMD可能成为菱形;
④无论点M运动到何处,∠CHM一定大于135°.
以上结论正确的有 ①②③④ (把所有正确结论的序号都填上).
【分析】①正确.证明∠ADM=30°,即可得出结论.
②正确.证明△DHM是等腰直角三角形即可.
③正确.首先证明四边形CEMD是平行四边形,再证明,DM>CD即可判断.
④正确.证明∠AHM<∠BAC=45°,即可判断.
【解答】解:如图,连接DH,HM.
由题可得,AM=BE,
∴AB=EM=AD,
∵四边形ABCD是正方形,EH⊥AC,
∴EM=AD,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,
∴EH=AH,
∴△MEH≌△DAH(SAS),
∴∠MHE=∠DHA,MH=DH,
∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,
∴DM=2HM,故②正确;
当∠DHC=60°时,∠ADH=60°﹣45°=15°,
∴∠ADM=45°﹣15°=30°,
∴Rt△ADM中,DM=2AM,
即DM=2BE,故①正确;
∵CD∥EM,EC∥DM,
∴四边形CEMD是平行四边形,
∵DM>AD,AD=CD,
∴DM>CD,
∴四边形CEMD不可能是菱形,故③正确,
∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,
∴∠AHM<∠BAC=45°,
∴∠CHM>135°,故④正确;
由上可得正确结论的序号为①②③.
故答案为①②③④.
三、解答题(本大题共8题,共72分.解答时写出必要的文字说明、演算步骤或推理过程)
17.(8分)(1)解不等式组,并求出该不等式组的最小整数解.
(2)先化简,再求值:(﹣)÷,其中a满足a2+2a﹣15=0.
【分析】(1)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集;
(2)先根据分式的混合运算顺序和运算法则化简原式,再由已知等式得出a2+2a=15,整体代入计算可得.
【解答】解:(1)解不等式①,得:x>﹣,
解不等式②,得:x≤4,
则不等式组的解集为﹣<x≤4,
∴不等式组的最小整数解为﹣2;
(2)原式=[+]÷
=(+)•
=•
=
=,
∵a2+2a﹣15=0,
∴a2+2a=15,
则原式=.
18.(9分)“学而时习之,不亦说乎?”古人把经常复习当作是一种乐趣.某校为了解九年级(一)班学生每周的复习情况,班长对该班学生每周的复习时间进行了调查,复习时间四舍五入后只有4种:1小时,2小时,3小时,4小时,已知该班共有50人,根据调查结果,制作了两幅不完整的统计图表,该班女生一周的复习时间数据(单位:小时)如下:
1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4
九年级(一)班女生一周复习时间频数分布表
复习时间
频数(学生人数)
1小时
3
2小时
a
3小时
4
4小时
6
(1)统计表中a= 7 ,该班女生一周复习时间的中位数为 2.5 小时;
(2)扇形统计图中,该班男生一周复习时间为4小时所对应圆心角的度数为 72 °;
(3)该校九年级共有600名学生,通过计算估计一周复习时间为4小时的学生有多少名?
(4)在该班复习时间为4小时的女生中,选择其中四名分别记为A,B,C.,D,为了培养更多学生对复习的兴趣,随机从该四名女生中选取两名进行班会演讲,请用树状图或者列表法求恰好选中B和D的概率.
【分析】(1)由已知数据可得a的值,利用中位数的定义求解可得;
(2)先根据百分比之和等于1求出该班男生一周复习时间为4小时所对应的百分比,再乘以360°即可得;
(3)用总人数乘以样本中一周复习时间为4小时的学生所占比例即可得;
(4)通过树状图展示12种等可能的结果数,找出恰好选中B和D的结果数,然后根据概率公式求解.
【解答】解:(1)由题意知a=7,该班女生一周复习时间的中位数为=2.5(小时),
故答案为:7,2.5;
(2)扇形统计图中,该班男生一周复习时间为4小时所对应的百分比为1﹣(10%+20%+50%)=20%,
∴该班男生一周复习时间为4小时所对应的圆心角的度数为360°×20%=72°,
故答案为:72;
(3)估计一周复习时间为4小时的学生有600×(+20%)=300(名);
答:估计一周复习时间为4小时的学生有300名.
(4)画树状图得:
∵一共有12种可能出现的结果,它们都是等可能的,恰好选中B和D的有2种结果,
∴恰好选中B和D的概率为P==.
答:恰好选中B和D的概率为.
19.(8分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求函数y=kx+b和y=的表达式;
(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.
【分析】(1)利用待定系数法即可解答;
(2)设点M的坐标为(x,2x﹣5),根据MB=MC,得到,即可解答.
【解答】解:(1)把点A(4,3)代入函数y=得:a=3×4=12,
∴y=.
OA==5,
∵OA=OB,
∴OB=5,
∴点B的坐标为(0,﹣5),
把B(0,﹣5),A(4,3)代入y=kx+b得:
解得:
∴y=2x﹣5.
(2)方法一:∵点M在一次函数y=2x﹣5上,
∴设点M的坐标为(x,2x﹣5),
∵MB=MC,
∴
解得:x=2.5,
∴点M的坐标为(2.5,0).方法二:∵B(0,﹣5)、C(0,5),
∴BC=10,
∴BC的中垂线为:直线y=0,
当y=0时,2x﹣5=0,即x=2.5,
∴点M的坐标为(2.5,0).
20.(8分)图1是挂墙式淋浴花洒的实物图,图2是抽象出来的几何图形.为使身高175cm的人能方便地淋浴,应当使旋转头固定在墙上的某个位置O,花洒的最高点B与人的头顶的铅垂距离为15cm,已知龙头手柄OA长为10cm,花洒直径AB是8cm,龙头手柄与墙面的较小夹角∠COA=26°,∠OAB=146°,则安装时,旋转头的固定点O与地面的距离应为多少?(计算结果精确到1cm,参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)
【分析】通过作辅助线构造直角三角形,分别在Rt△ABF和在Rt△AOE中,根据锐角三角函数求出OE、BF,而点B到地面的高度为175+15=190cm,进而取出后OG即可.
【解答】解:如图,过点B作地面的垂线,垂足为D,过点 A作地面GD的平行线,交OC于点E,交BD于点F,
在Rt△AOE中,∠AOE=26°,OA=10,
则OE=OA•cos∠AOE≈10×0.90=9cm,
在Rt△ABF中,∠BOF=146°﹣90°﹣26°=30°,AB=8,
则BF=AB•sin∠BOF=8×=4cm,
∴OG=BD﹣BF﹣OE=(175+15)﹣4﹣9=177cm,
答:旋转头的固定点O与地面的距离应为177cm.
21.(9分)我们知道,顶点坐标为(h,k)的抛物线的解析式为y=a(x﹣h)2+k(a≠0).今后我们还会学到,圆心坐标为(a,b),半径为r的圆的方程(x﹣a)2+(y﹣b)2=r2,如:圆心为P(﹣2,1),半径为3的圆的方程为(x+2)2+(y﹣1)2=9.
(1)以M(﹣3,﹣1)为圆心,为半径的圆的方程为 (x+3)2+(y+1)2=3 .
(2)如图,以B(﹣3,0)为圆心的圆与y轴相切于原点,C是⊙B上一点,连接OC,作BD⊥OC,垂足为D,延长BD交y轴于点E,已知sin∠AOC=.
①连接EC,证明:EC是⊙B的切线;
②在BE上是否存在一点Q,使QB=QC=QE=QO?若存在,求点Q的坐标,并写出以Q为圆心,以QB为半径的⊙Q的方程;若不存在,请说明理由.
【分析】(1)由圆的方程的定义可求解;
(2)①由“SAS”可证△CBE≌△OBE,可得∠BCE=∠BOE=90°,可得结论;
②如图,连接CQ,QO,由余角性质可得∠AOC=∠BEO,由锐角三角函数可求EO的长,可得点E坐标,由QB=QC=QE=QO,可得点Q是BE中点,由中点坐标公式可求点Q坐标,即可求解.
【解答】解:(1)以M(﹣3,﹣1)为圆心,为半径的圆的方程为(x+3)2+(y+1)2=3,
故答案为:(x+3)2+(y+1)2=3;
(2)①∵OE是⊙B切线,
∴∠BOE=90°,
∵CB=OB,BD⊥CO,
∴∠CBE=∠OBE,
又∵BC=BO,BE=BE,
∴△CBE≌△OBE(SAS),
∴∠BCE=∠BOE=90°,
∴BC⊥CE,
又∵BC是半径,
∴EC是⊙B的切线;
②如图,连接CQ,QO,
∵点B(﹣3,0),
∴OB=3,
∵∠AOC+∠DOE=90°,∠DOE+∠DEO=90°,
∴∠AOC=∠BEO,
∵sin∠AOC=.
∴sin∠BEO==,
∴BE=5,
∴OE===4,
∴点E(0,4),
∵QB=QC=QE=QO,
∴点Q是BE的中点,
∵点B(﹣3,0),点E(0,4),
∴点Q(﹣,2),
∴以Q为圆心,以QB为半径的⊙Q的方程为(x+)2+(y﹣2)2=9.
22.(8分)某水果店将标价为10元/斤的某种水果.经过两次降价后,价格为8.1元/斤,并且两次降价的百分率相同.
(1)求该水果每次降价的百分率;
(2)从第二次降价的第1天算起,第x天(x为整数)的销量及储藏和损耗费用的相关信息如下表所示:
时间(天)
x
销量(斤)
120﹣x
储藏和损耗费用(元)
3x2﹣64x+400
已知该水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<10)之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少?
【分析】(1)根据题意,可以列出相应的方程,从而可以求得相应的百分率;
(2)根据题意和表格中的数据,可以求得y与x(1≤x<10)之间的函数解析式,然后利用二次函数的性质可以求出第几天时销售利润最大,最大利润是多少.
【解答】解:(1)设该水果每次降价的百分率为x,
10(1﹣x)2=8.1,
解得,x1=0.1,x2=1.9(舍去),
答:该水果每次降价的百分率是10%;
(2)由题意可得,
y=(8.1﹣4.1)×(120﹣x)﹣(3x2﹣64x+400)=﹣3x2+60x+80=﹣3(x﹣10)2+380,
∵1≤x<10,
∴当x=9时,y取得最大值,此时y=377,
由上可得,y与x(1≤x<10)之间的函数解析式是y=﹣3x2+60x+80,第9天时销售利润最大,最大利润是377元.
23.(10分)(1)【操作发现】
如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.
①请按要求画图:将△ABC绕点A顺时针方向旋转90°,点B的对应点为点B′,点C的对应点为点C′.连接BB′;
②在①中所画图形中,∠AB′B= 45 °.
(2)【问题解决】
如图2,在Rt△ABC中,BC=1,∠C=90°,延长CA到D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE,连接DE,求∠ADE的度数.
(3)【拓展延伸】
如图3,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=1,CD=3,AD=kAB(k为常数),求BD的长(用含k的式子表示).
【分析】(1)①根据旋转角,旋转方向画出图形即可.
②只要证明△ABB′是等腰直角三角形即可.
(2)如图2,过点E作EH⊥CD交CD的延长线于H.证明△ABC≌△EAH(AAS)即可解决问题.
(3)如图3中,由AE⊥BC,BE=EC,推出AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,只要证明∠GDC=90°,可得CG=,由此即可解决问题.
【解答】解:(1)①如图,△AB′C′即为所求.
②由作图可知,△ABB′是等腰直角三角形,
∴∠AB′B=45°,
故答案为45.
(2)如图2中,过点E作EH⊥CD交CD的延长线于H.
∵∠C=∠BAE=∠H=90°,
∴∠B+∠CAB=90°,∠CAB+∠EAH=90°,
∴∠B=∠EAH,
∵AB=AE,
∴△ABC≌△EAH(AAS),
∴BC=AH,EH=AC,
∵BC=CD,
∴CD=AH,
∴DH=AC=EH,
∴∠EDH=45°,
∴∠ADE=135°.
(3)如图③中,∵AE⊥BC,BE=EC,
∴AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,
∵∠BAD=∠CAG,
∴∠BAC=∠DAG,
∵AB=AC,AD=AG,
∴∠ABC=∠ACB=∠ADG=∠AGD,
∴△ABC∽△ADG,
∵AD=kAB,
∴DG=kBC=2k,
∵∠BAE+∠ABC=90°,∠BAE=∠ADC,
∴∠ADG+∠ADC=90°,
∴∠GDC=90°,
∴CG==.
∴BD=CG=.
24.(12分)如图1,抛物线y=x2+bx+c交x轴于A,B两点,其中点A的坐标为(1,0),与y轴交于点C(0,﹣3).
(1)求抛物线的函数解析式;
(2)点D为y轴上一点,如果直线BD与直线BC的夹角为15°,求线段CD的长度;
(3)如图2,连接AC,点P在抛物线上,且满足∠PAB=2∠ACO,求点P的坐标.
【分析】(1)将点A,点C坐标代入解析式可求解;
(2)先求出点B坐标,可得OB=OC,可得∠OBC=∠OCB=45°,再分点D在点C上方或下方两种情况讨论,由锐角三角函数可求解;
(3)在BO上截取OE=OA,连接CE,过点E作EF⊥AC,由“SAS”可证△OCE≌△OCA,可得∠ACO=∠ECO,CE=AC=,由面积法可求EF的长,由勾股定理可求CF的长,可求tan∠ECA=tan∠PAB=,分点P在AB上方和下方两种情况讨论,求出AP解析式,联立方程组可求点P坐标.
【解答】解:(1)∵抛物线y=x2+bx+c交x轴于点A(1,0),与y轴交于点C(0,﹣3),
∴,
解得:,
∴抛物线解析式为:y=x2+2x﹣3;
(2)∵抛物线y=x2+2x﹣3与x轴于A,B两点,
∴点B(﹣3,0),
∵点B(﹣3,0),点C(0,﹣3),
∴OB=OC=3,
∴∠OBC=∠OCB=45°,
如图1,当点D在点C上方时,
∵∠DBC=15°,
∴∠OBD=30°,
∴tan∠DBO==,
∴OD=×3=,
∴CD=3﹣;
若点D在点C下方时,
∵∠DBC=15°,
∴∠OBD=60°,
∴tan∠DBO==,
∴OD=3,
∴DC=3﹣3,
综上所述:线段CD的长度为3﹣或3﹣3;
(3)如图2,在BO上截取OE=OA,连接CE,过点E作EF⊥AC,
∵点A(1,0),点C(0,﹣3),
∴OA=1,OC=3,
∴AC===,
∵OE=OA,∠COE=∠COA=90°,OC=OC,
∴△OCE≌△OCA(SAS),
∴∠ACO=∠ECO,CE=AC=,
∴∠ECA=2∠ACO,
∵∠PAB=2∠ACO,
∴∠PAB=∠ECA,
∵S△AEC=AE×OC=AC×EF,
∴EF==,
∴CF===,
∴tan∠ECA==,
如图2,当点P在AB的下方时,设AO与y轴交于点N,
∵∠PAB=∠ECA,
∴tan∠ECA=tan∠PAB==,
∴ON=,
∴点N(0,),
又∵点A(1,0),
∴直线AP解析式为:y=x﹣,
联立方程组得:,
解得:或,
∴点P坐标为:(﹣,﹣),
当点P在AB的上方时,同理可求直线AP解析式为:y=﹣x+,
联立方程组得:,
解得:或,
∴点P坐标为:(﹣,),
综上所述:点P的坐标为(﹣,),(﹣,﹣).
一、单项选择题(本大题共10小题,每小题3分,共30分)
1.(3分)实数﹣的绝对值是( )
A. B.﹣ C.﹣ D.
2.(3分)已知某物体的三视图如图所示,那么与它对应的物体是( )
A. B. C. D.
3.(3分)函数y=中自变量x的取值范围在数轴上表示正确的是( )
A. B.
C. D.
4.(3分)下列计算错误的是( )
A.(﹣3ab2)2=9a2b4 B.﹣6a3b÷3ab=﹣2a2
C.(a2)3﹣(﹣a3)2=0 D.(x+1)2=x2+1
5.(3分)将三角尺按如图所示放置在一张矩形纸片上,∠EGF=90°,∠FEG=30°,∠1=125°,则∠BFG的大小为( )
A.125° B.115° C.110° D.120°
6.(3分)一次数学测试,某小组5名同学的成绩统计如表(有两个数据被遮盖):
组员
甲
乙
丙
丁
戊
平均成绩
众数
得分
77
81
■
80
82
80
■
则被遮盖的两个数据依次是( )
A.81,80 B.80,2 C.81,2 D.80,80
7.(3分)在四边形ABCD中,AD∥BC,∠D=90°,AD=8,BC=6,分别以A,C为圆心,大于AC的长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O,若点O是AC的中点,则CD的长为( )
A.4 B.2 C.6 D.8
8.(3分)下列说法正确的是( )
①的值大于;
②正六边形的内角和是720°,它的边长等于半径;
③从一副扑克牌中随机抽取一张,它是黑桃的概率是;
④甲、乙两人各进行了10次射击测试,他们的平均成绩相同,方差分别是s2甲=1.3,s2乙=1.1,则乙的射击成绩比甲稳定.
A.①②③④ B.①②④ C.①④ D.②③
9.(3分)如图,四边形OAA1B1是边长为1的正方形,以对角线OA1为边作第二个正方形OA1A2B2,连接AA2,得到△AA1A2;再以对角线OA2为边作第三个正方形OA2A3B3,连接A1A3,得到△A1A2A3,再以对角线OA3为边作第四个正方形OA2A4B4,连接A2A4,得到△A2A3A4,…,设△AA1A2,△A1A2A3,△A2A3A4,…,的面积分别为S1,S2,S3,…,如此下去,则S2020的值为( )
A. B.22018 C.22018+ D.1010
10.(3分)鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆,离入口处的路程y(米)与时间x(分)的函数关系如图2所示,下列结论错误的是( )
A.第一班车离入口处的距离y(米)与时间x(分)的解析式为y=200x﹣4000(20≤x≤38)
B.第一班车从入口处到达花鸟馆所需的时间为10分钟
C.小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车
D.小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)
二、填空题(本大题共6题,每题3分,共18分)
11.(3分)截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为 .
12.(3分)计算:+()﹣2﹣3tan60°+(π)0= .
13.(3分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠BCD=30°,CD=2,则阴影部分面积S阴影= .
14.(3分)如图,平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为6,4,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为 .
15.(3分)如图,在等边△ABC中,AB=6,点D,E分别在边BC,AC上,且BD=CE,连接AD,BE交于点F,连接CF,则CF的最小值是 .
16.(3分)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到,若过点E作EH⊥AC,H为垂足,则有以下结论:
①点M位置变化,使得∠DHC=60°时,2BE=DM;
②无论点M运动到何处,都有DM=HM;
③在点M的运动过程中,四边形CEMD可能成为菱形;
④无论点M运动到何处,∠CHM一定大于135°.
以上结论正确的有 (把所有正确结论的序号都填上).
三、解答题(本大题共8题,共72分.解答时写出必要的文字说明、演算步骤或推理过程)
17.(8分)(1)解不等式组,并求出该不等式组的最小整数解.
(2)先化简,再求值:(﹣)÷,其中a满足a2+2a﹣15=0.
18.(9分)“学而时习之,不亦说乎?”古人把经常复习当作是一种乐趣.某校为了解九年级(一)班学生每周的复习情况,班长对该班学生每周的复习时间进行了调查,复习时间四舍五入后只有4种:1小时,2小时,3小时,4小时,已知该班共有50人,根据调查结果,制作了两幅不完整的统计图表,该班女生一周的复习时间数据(单位:小时)如下:
1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4
九年级(一)班女生一周复习时间频数分布表
复习时间
频数(学生人数)
1小时
3
2小时
a
3小时
4
4小时
6
(1)统计表中a= ,该班女生一周复习时间的中位数为 小时;
(2)扇形统计图中,该班男生一周复习时间为4小时所对应圆心角的度数为 °;
(3)该校九年级共有600名学生,通过计算估计一周复习时间为4小时的学生有多少名?
(4)在该班复习时间为4小时的女生中,选择其中四名分别记为A,B,C.,D,为了培养更多学生对复习的兴趣,随机从该四名女生中选取两名进行班会演讲,请用树状图或者列表法求恰好选中B和D的概率.
19.(8分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求函数y=kx+b和y=的表达式;
(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.
20.(8分)图1是挂墙式淋浴花洒的实物图,图2是抽象出来的几何图形.为使身高175cm的人能方便地淋浴,应当使旋转头固定在墙上的某个位置O,花洒的最高点B与人的头顶的铅垂距离为15cm,已知龙头手柄OA长为10cm,花洒直径AB是8cm,龙头手柄与墙面的较小夹角∠COA=26°,∠OAB=146°,则安装时,旋转头的固定点O与地面的距离应为多少?(计算结果精确到1cm,参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)
21.(9分)我们知道,顶点坐标为(h,k)的抛物线的解析式为y=a(x﹣h)2+k(a≠0).今后我们还会学到,圆心坐标为(a,b),半径为r的圆的方程(x﹣a)2+(y﹣b)2=r2,如:圆心为P(﹣2,1),半径为3的圆的方程为(x+2)2+(y﹣1)2=9.
(1)以M(﹣3,﹣1)为圆心,为半径的圆的方程为 .
(2)如图,以B(﹣3,0)为圆心的圆与y轴相切于原点,C是⊙B上一点,连接OC,作BD⊥OC,垂足为D,延长BD交y轴于点E,已知sin∠AOC=.
①连接EC,证明:EC是⊙B的切线;
②在BE上是否存在一点Q,使QB=QC=QE=QO?若存在,求点Q的坐标,并写出以Q为圆心,以QB为半径的⊙Q的方程;若不存在,请说明理由.
22.(8分)某水果店将标价为10元/斤的某种水果.经过两次降价后,价格为8.1元/斤,并且两次降价的百分率相同.
(1)求该水果每次降价的百分率;
(2)从第二次降价的第1天算起,第x天(x为整数)的销量及储藏和损耗费用的相关信息如下表所示:
时间(天)
x
销量(斤)
120﹣x
储藏和损耗费用(元)
3x2﹣64x+400
已知该水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<10)之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少?
23.(10分)(1)【操作发现】
如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.
①请按要求画图:将△ABC绕点A顺时针方向旋转90°,点B的对应点为点B′,点C的对应点为点C′.连接BB′;
②在①中所画图形中,∠AB′B= °.
(2)【问题解决】
如图2,在Rt△ABC中,BC=1,∠C=90°,延长CA到D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE,连接DE,求∠ADE的度数.
(3)【拓展延伸】
如图3,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=1,CD=3,AD=kAB(k为常数),求BD的长(用含k的式子表示).
24.(12分)如图1,抛物线y=x2+bx+c交x轴于A,B两点,其中点A的坐标为(1,0),与y轴交于点C(0,﹣3).
(1)求抛物线的函数解析式;
(2)点D为y轴上一点,如果直线BD与直线BC的夹角为15°,求线段CD的长度;
(3)如图2,连接AC,点P在抛物线上,且满足∠PAB=2∠ACO,求点P的坐标.
2020年内蒙古鄂尔多斯市中考数学试卷
参考答案与试题解析
一、单项选择题(本大题共10小题,每小题3分,共30分)
1.(3分)实数﹣的绝对值是( )
A. B.﹣ C.﹣ D.
【分析】直接利用绝对值的性质分析得出答案.
【解答】解:实数﹣的绝对值是:.
故选:A.
2.(3分)已知某物体的三视图如图所示,那么与它对应的物体是( )
A. B. C. D.
【分析】该几何体是下面是长方体,上面是一个圆柱体,且长方体的宽与圆柱底面直径相等,从而得出答案.
【解答】解:由三视图知,该几何体是下面是长方体,上面是一个圆柱体,且长方体的宽与圆柱底面直径相等,
符合这一条件的是C选项几何体,
故选:C.
3.(3分)函数y=中自变量x的取值范围在数轴上表示正确的是( )
A. B.
C. D.
【分析】根据二次根式有意义的条件可得x+3≥0,再解即可.
【解答】解:由题意得:x+3≥0,
解得:x≥﹣3,
在数轴上表示为,
故选:C.
4.(3分)下列计算错误的是( )
A.(﹣3ab2)2=9a2b4 B.﹣6a3b÷3ab=﹣2a2
C.(a2)3﹣(﹣a3)2=0 D.(x+1)2=x2+1
【分析】直接利用积的乘方运算法则以及整式的除法运算法则、完全平方公式分别化简得出答案.
【解答】解:A、(﹣3ab2)2=9a2b4,原式计算正确,不合题意;
B、﹣6a3b÷3ab=﹣2a2,原式计算正确,不合题意;
C、(a2)3﹣(﹣a3)2=0,原式计算正确,不合题意;
D、(x+1)2=x2++2x+1,原式计算错误,符合题意.
故选:D.
5.(3分)将三角尺按如图所示放置在一张矩形纸片上,∠EGF=90°,∠FEG=30°,∠1=125°,则∠BFG的大小为( )
A.125° B.115° C.110° D.120°
【分析】根据矩形得出AD∥BC,根据平行线的性质得出∠1+∠BFE=180°,求出∠BFE,根据三角形内角和定理求出∠EFG,即可求出答案.
【解答】解:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠1+∠BFE=180°,
∵∠1=125°,
∴∠BFE=55°,
∵在△EGF中,∠EGF=90°,∠FEG=30°,
∴∠EFG=180°﹣∠EGF﹣∠FEG=60°,
∴∠BFG=∠BFE+∠EFG=55°+60°=115°,
故选:B.
6.(3分)一次数学测试,某小组5名同学的成绩统计如表(有两个数据被遮盖):
组员
甲
乙
丙
丁
戊
平均成绩
众数
得分
77
81
■
80
82
80
■
则被遮盖的两个数据依次是( )
A.81,80 B.80,2 C.81,2 D.80,80
【分析】设丙的成绩为x,根据算术平均数的定义列出关于x的方程,解之求出x的值,据此可得第1个被遮盖的数据,再利用众数的定义可得第2个被遮盖的数据,从而得出答案.
【解答】解:设丙的成绩为x,
则=80,
解得x=80,
∴丙的成绩为80,
在这5名学生的成绩中80出现次数最多,
所以众数为80,
所以被遮盖的两个数据依次是80,80,
故选:D.
7.(3分)在四边形ABCD中,AD∥BC,∠D=90°,AD=8,BC=6,分别以A,C为圆心,大于AC的长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O,若点O是AC的中点,则CD的长为( )
A.4 B.2 C.6 D.8
【分析】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出AF=FC.再根据ASA证明△FOA≌△BOC,那么AF=BC=6,等量代换得到FC=AF=6,利用线段的和差关系求出FD=AD﹣AF=2.然后在Rt△FDC中利用勾股定理即可求出CD的长.
【解答】解:如图,连接FC,
由题可得,点E和点O在AC的垂直平分线上,
∴EO垂直平分AC,
∴AF=FC,
∵AD∥BC,
∴∠FAO=∠BCO,
在△FOA与△BOC中,
,
∴△FOA≌△BOC(ASA),
∴AF=BC=6,
∴FC=AF=6,FD=AD﹣AF=2.
在△FDC中,∵∠D=90°,
∴CD2+DF2=FC2,
即CD2+22=62,
解得CD=.
故选:A.
8.(3分)下列说法正确的是( )
①的值大于;
②正六边形的内角和是720°,它的边长等于半径;
③从一副扑克牌中随机抽取一张,它是黑桃的概率是;
④甲、乙两人各进行了10次射击测试,他们的平均成绩相同,方差分别是s2甲=1.3,s2乙=1.1,则乙的射击成绩比甲稳定.
A.①②③④ B.①②④ C.①④ D.②③
【分析】分别根据黄金数的近似值、多边形的内角和与半径的定义与性质、概率公式、方差的意义分别判断可得.
【解答】解:①的值约为0.618,大于,此说法正确;
②正六边形的内角和是720°,它的边长等于半径,此说法正确;
③从一副扑克牌中随机抽取一张,它是黑桃的概率是,此说法错误;
④∵s2甲=1.3,s2乙=1.1,∴s2甲>s2乙,故乙的射击成绩比甲稳定,此说法正确;
故选:B.
9.(3分)如图,四边形OAA1B1是边长为1的正方形,以对角线OA1为边作第二个正方形OA1A2B2,连接AA2,得到△AA1A2;再以对角线OA2为边作第三个正方形OA2A3B3,连接A1A3,得到△A1A2A3,再以对角线OA3为边作第四个正方形OA2A4B4,连接A2A4,得到△A2A3A4,…,设△AA1A2,△A1A2A3,△A2A3A4,…,的面积分别为S1,S2,S3,…,如此下去,则S2020的值为( )
A. B.22018 C.22018+ D.1010
【分析】首先求出S1、S2、S3,然后猜测命题中隐含的数学规律,即可解决问题.
【解答】解:∵四边形OAA1B1是正方形,
∴OA=AA1=A1B1=1,
∴S1=1×1=,
∵∠OAA1=90°,
∴OA12=12+12=2,
∴OA2=A2A3=2,
∴S2=2×1=1,
同理可求:S3=2×2=2,S4=4…,
∴Sn=2n﹣2,
∴S2020=22018,
故选:B.
10.(3分)鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆,离入口处的路程y(米)与时间x(分)的函数关系如图2所示,下列结论错误的是( )
A.第一班车离入口处的距离y(米)与时间x(分)的解析式为y=200x﹣4000(20≤x≤38)
B.第一班车从入口处到达花鸟馆所需的时间为10分钟
C.小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车
D.小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)
【分析】设y=kx+b,运用待定系数法求解即可得出第一班车离入口处的距离y(米)与时间x(分)的解析式;把y=2500代入函数解析式即可求出第一班车从入口处到达花鸟馆所需的时间;设小聪坐上了第n班车,30﹣25+10(n﹣1)≥40,解得n≥4.5,可得小聪坐上了第5班车,再根据“路程、速度与时间的关系”解答即可.
【解答】解:由题意得,可设第一班车离入口处的距离y(米)与时间x(分)的解析式为:y=kx+b(k≠0),
把(20,0),(38,3600)代入y=kx+b,得,解得,
∴第一班车离入口处的路程y(米)与时间x(分)的函数表达为y=200x﹣4000(20≤x≤38);
故选项A不合题意;
把y=2000代入y=200x﹣4000,解得x=30,
30﹣20=10(分),
∴第一班车从入口处到达塔林所需时间10分钟;
故选项B不合题意;
设小聪坐上了第n班车,则
30﹣25+10(n﹣1)≥40,解得n≥4.5,
∴小聪坐上了第5班车,
故选项C符合题意;
等车的时间为5分钟,坐班车所需时间为:1600÷200=8(分),
步行所需时间:1600÷(2000÷25)=20(分),
20﹣(8+5)=7(分),
∴比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟.
故选项D不合题意.
故选:C.
二、填空题(本大题共6题,每题3分,共18分)
11.(3分)截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为 1.051×107. .
【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.
【解答】解:1051万=10510000=1.051×107.
故答案为:1.051×107.
12.(3分)计算:+()﹣2﹣3tan60°+(π)0= 10 .
【分析】直接利用零指数幂的性质以及特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.
【解答】解:原式=3+9﹣3+1
=10.
故答案为:10.
13.(3分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠BCD=30°,CD=2,则阴影部分面积S阴影= .
【分析】连接OC.证明OC∥BD,推出S阴=S扇形OBD即可解决问题.
【解答】解:连接OC.
∵AB⊥CD,
∴=,CE=DE=,
∴∠COD=∠BOD,
∵∠BOD=2∠BCD=60°,
∴∠COB=60°,
∵OC=OB=OD,
∴△OBC,△OBD都是等边三角形,
∴OC=BC=BD=OD,
∴四边形OCBD是菱形,
∴OC∥BD,
∴S△BDC=S△BOD,
∴S阴=S扇形OBD,
∵OD==2,
∴S阴==,
故答案为.
14.(3分)如图,平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为6,4,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为 12 .
【分析】过点A作x轴的垂线,交CB的延长线于点E,根据A,B两点的纵坐标分别为6,4,可得出横坐标,即可表示AE,BE的长,根据菱形的面积为2,求得AE的长,在Rt△AEB中,计算BE的长,列方程即可得出k的值.
【解答】解:过点A作x轴的垂线,交CB的延长线于点E,
∵BC∥x轴,
∴AE⊥BC,
∵A,B两点在反比例函数y=(x>0)的图象,且纵坐标分别为6,4,
∴A(,6),B(,4),
∴AE=2,BE=﹣=,
∵菱形ABCD的面积为2,
∴BC×AE=2,即BC=,
∴AB=BC=,
在Rt△AEB中,BE===1,
∴k=1,
∴k=12.
故答案为12.
15.(3分)如图,在等边△ABC中,AB=6,点D,E分别在边BC,AC上,且BD=CE,连接AD,BE交于点F,连接CF,则CF的最小值是 2 .
【分析】首先证明∠AFB=120°,推出点F的运动轨迹是O为圆心,OA为半径的弧上运动(∠AOB=120°,OA=2),连接OC交⊙O于N,当点F与N重合时,CF的值最小.
【解答】解:如图,∵△ABC是等边三角形,
∴AB=BC=AC,∠ABC=∠BAC=∠BCE=60°,
∵BD=CE,
∴△ABD≌△BCE(SAS)
∴∠BAD=∠CBE,
又∵∠AFE=∠BAD+∠ABE,
∴∠AFE=∠CBE+∠ABE=∠ABC,
∴∠AFE=60°,
∴∠AFB=120°,
∴点F的运动轨迹是O为圆心,OA为半径的弧上运动(∠AOB=120°,OA=2),
连接OC交⊙O于N,当点F与N重合时,CF的值最小,最小值=OC﹣ON=4﹣2=2.
故答案为2.
16.(3分)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到,若过点E作EH⊥AC,H为垂足,则有以下结论:
①点M位置变化,使得∠DHC=60°时,2BE=DM;
②无论点M运动到何处,都有DM=HM;
③在点M的运动过程中,四边形CEMD可能成为菱形;
④无论点M运动到何处,∠CHM一定大于135°.
以上结论正确的有 ①②③④ (把所有正确结论的序号都填上).
【分析】①正确.证明∠ADM=30°,即可得出结论.
②正确.证明△DHM是等腰直角三角形即可.
③正确.首先证明四边形CEMD是平行四边形,再证明,DM>CD即可判断.
④正确.证明∠AHM<∠BAC=45°,即可判断.
【解答】解:如图,连接DH,HM.
由题可得,AM=BE,
∴AB=EM=AD,
∵四边形ABCD是正方形,EH⊥AC,
∴EM=AD,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,
∴EH=AH,
∴△MEH≌△DAH(SAS),
∴∠MHE=∠DHA,MH=DH,
∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,
∴DM=2HM,故②正确;
当∠DHC=60°时,∠ADH=60°﹣45°=15°,
∴∠ADM=45°﹣15°=30°,
∴Rt△ADM中,DM=2AM,
即DM=2BE,故①正确;
∵CD∥EM,EC∥DM,
∴四边形CEMD是平行四边形,
∵DM>AD,AD=CD,
∴DM>CD,
∴四边形CEMD不可能是菱形,故③正确,
∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,
∴∠AHM<∠BAC=45°,
∴∠CHM>135°,故④正确;
由上可得正确结论的序号为①②③.
故答案为①②③④.
三、解答题(本大题共8题,共72分.解答时写出必要的文字说明、演算步骤或推理过程)
17.(8分)(1)解不等式组,并求出该不等式组的最小整数解.
(2)先化简,再求值:(﹣)÷,其中a满足a2+2a﹣15=0.
【分析】(1)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集;
(2)先根据分式的混合运算顺序和运算法则化简原式,再由已知等式得出a2+2a=15,整体代入计算可得.
【解答】解:(1)解不等式①,得:x>﹣,
解不等式②,得:x≤4,
则不等式组的解集为﹣<x≤4,
∴不等式组的最小整数解为﹣2;
(2)原式=[+]÷
=(+)•
=•
=
=,
∵a2+2a﹣15=0,
∴a2+2a=15,
则原式=.
18.(9分)“学而时习之,不亦说乎?”古人把经常复习当作是一种乐趣.某校为了解九年级(一)班学生每周的复习情况,班长对该班学生每周的复习时间进行了调查,复习时间四舍五入后只有4种:1小时,2小时,3小时,4小时,已知该班共有50人,根据调查结果,制作了两幅不完整的统计图表,该班女生一周的复习时间数据(单位:小时)如下:
1,1,1,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4
九年级(一)班女生一周复习时间频数分布表
复习时间
频数(学生人数)
1小时
3
2小时
a
3小时
4
4小时
6
(1)统计表中a= 7 ,该班女生一周复习时间的中位数为 2.5 小时;
(2)扇形统计图中,该班男生一周复习时间为4小时所对应圆心角的度数为 72 °;
(3)该校九年级共有600名学生,通过计算估计一周复习时间为4小时的学生有多少名?
(4)在该班复习时间为4小时的女生中,选择其中四名分别记为A,B,C.,D,为了培养更多学生对复习的兴趣,随机从该四名女生中选取两名进行班会演讲,请用树状图或者列表法求恰好选中B和D的概率.
【分析】(1)由已知数据可得a的值,利用中位数的定义求解可得;
(2)先根据百分比之和等于1求出该班男生一周复习时间为4小时所对应的百分比,再乘以360°即可得;
(3)用总人数乘以样本中一周复习时间为4小时的学生所占比例即可得;
(4)通过树状图展示12种等可能的结果数,找出恰好选中B和D的结果数,然后根据概率公式求解.
【解答】解:(1)由题意知a=7,该班女生一周复习时间的中位数为=2.5(小时),
故答案为:7,2.5;
(2)扇形统计图中,该班男生一周复习时间为4小时所对应的百分比为1﹣(10%+20%+50%)=20%,
∴该班男生一周复习时间为4小时所对应的圆心角的度数为360°×20%=72°,
故答案为:72;
(3)估计一周复习时间为4小时的学生有600×(+20%)=300(名);
答:估计一周复习时间为4小时的学生有300名.
(4)画树状图得:
∵一共有12种可能出现的结果,它们都是等可能的,恰好选中B和D的有2种结果,
∴恰好选中B和D的概率为P==.
答:恰好选中B和D的概率为.
19.(8分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求函数y=kx+b和y=的表达式;
(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.
【分析】(1)利用待定系数法即可解答;
(2)设点M的坐标为(x,2x﹣5),根据MB=MC,得到,即可解答.
【解答】解:(1)把点A(4,3)代入函数y=得:a=3×4=12,
∴y=.
OA==5,
∵OA=OB,
∴OB=5,
∴点B的坐标为(0,﹣5),
把B(0,﹣5),A(4,3)代入y=kx+b得:
解得:
∴y=2x﹣5.
(2)方法一:∵点M在一次函数y=2x﹣5上,
∴设点M的坐标为(x,2x﹣5),
∵MB=MC,
∴
解得:x=2.5,
∴点M的坐标为(2.5,0).方法二:∵B(0,﹣5)、C(0,5),
∴BC=10,
∴BC的中垂线为:直线y=0,
当y=0时,2x﹣5=0,即x=2.5,
∴点M的坐标为(2.5,0).
20.(8分)图1是挂墙式淋浴花洒的实物图,图2是抽象出来的几何图形.为使身高175cm的人能方便地淋浴,应当使旋转头固定在墙上的某个位置O,花洒的最高点B与人的头顶的铅垂距离为15cm,已知龙头手柄OA长为10cm,花洒直径AB是8cm,龙头手柄与墙面的较小夹角∠COA=26°,∠OAB=146°,则安装时,旋转头的固定点O与地面的距离应为多少?(计算结果精确到1cm,参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49)
【分析】通过作辅助线构造直角三角形,分别在Rt△ABF和在Rt△AOE中,根据锐角三角函数求出OE、BF,而点B到地面的高度为175+15=190cm,进而取出后OG即可.
【解答】解:如图,过点B作地面的垂线,垂足为D,过点 A作地面GD的平行线,交OC于点E,交BD于点F,
在Rt△AOE中,∠AOE=26°,OA=10,
则OE=OA•cos∠AOE≈10×0.90=9cm,
在Rt△ABF中,∠BOF=146°﹣90°﹣26°=30°,AB=8,
则BF=AB•sin∠BOF=8×=4cm,
∴OG=BD﹣BF﹣OE=(175+15)﹣4﹣9=177cm,
答:旋转头的固定点O与地面的距离应为177cm.
21.(9分)我们知道,顶点坐标为(h,k)的抛物线的解析式为y=a(x﹣h)2+k(a≠0).今后我们还会学到,圆心坐标为(a,b),半径为r的圆的方程(x﹣a)2+(y﹣b)2=r2,如:圆心为P(﹣2,1),半径为3的圆的方程为(x+2)2+(y﹣1)2=9.
(1)以M(﹣3,﹣1)为圆心,为半径的圆的方程为 (x+3)2+(y+1)2=3 .
(2)如图,以B(﹣3,0)为圆心的圆与y轴相切于原点,C是⊙B上一点,连接OC,作BD⊥OC,垂足为D,延长BD交y轴于点E,已知sin∠AOC=.
①连接EC,证明:EC是⊙B的切线;
②在BE上是否存在一点Q,使QB=QC=QE=QO?若存在,求点Q的坐标,并写出以Q为圆心,以QB为半径的⊙Q的方程;若不存在,请说明理由.
【分析】(1)由圆的方程的定义可求解;
(2)①由“SAS”可证△CBE≌△OBE,可得∠BCE=∠BOE=90°,可得结论;
②如图,连接CQ,QO,由余角性质可得∠AOC=∠BEO,由锐角三角函数可求EO的长,可得点E坐标,由QB=QC=QE=QO,可得点Q是BE中点,由中点坐标公式可求点Q坐标,即可求解.
【解答】解:(1)以M(﹣3,﹣1)为圆心,为半径的圆的方程为(x+3)2+(y+1)2=3,
故答案为:(x+3)2+(y+1)2=3;
(2)①∵OE是⊙B切线,
∴∠BOE=90°,
∵CB=OB,BD⊥CO,
∴∠CBE=∠OBE,
又∵BC=BO,BE=BE,
∴△CBE≌△OBE(SAS),
∴∠BCE=∠BOE=90°,
∴BC⊥CE,
又∵BC是半径,
∴EC是⊙B的切线;
②如图,连接CQ,QO,
∵点B(﹣3,0),
∴OB=3,
∵∠AOC+∠DOE=90°,∠DOE+∠DEO=90°,
∴∠AOC=∠BEO,
∵sin∠AOC=.
∴sin∠BEO==,
∴BE=5,
∴OE===4,
∴点E(0,4),
∵QB=QC=QE=QO,
∴点Q是BE的中点,
∵点B(﹣3,0),点E(0,4),
∴点Q(﹣,2),
∴以Q为圆心,以QB为半径的⊙Q的方程为(x+)2+(y﹣2)2=9.
22.(8分)某水果店将标价为10元/斤的某种水果.经过两次降价后,价格为8.1元/斤,并且两次降价的百分率相同.
(1)求该水果每次降价的百分率;
(2)从第二次降价的第1天算起,第x天(x为整数)的销量及储藏和损耗费用的相关信息如下表所示:
时间(天)
x
销量(斤)
120﹣x
储藏和损耗费用(元)
3x2﹣64x+400
已知该水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<10)之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少?
【分析】(1)根据题意,可以列出相应的方程,从而可以求得相应的百分率;
(2)根据题意和表格中的数据,可以求得y与x(1≤x<10)之间的函数解析式,然后利用二次函数的性质可以求出第几天时销售利润最大,最大利润是多少.
【解答】解:(1)设该水果每次降价的百分率为x,
10(1﹣x)2=8.1,
解得,x1=0.1,x2=1.9(舍去),
答:该水果每次降价的百分率是10%;
(2)由题意可得,
y=(8.1﹣4.1)×(120﹣x)﹣(3x2﹣64x+400)=﹣3x2+60x+80=﹣3(x﹣10)2+380,
∵1≤x<10,
∴当x=9时,y取得最大值,此时y=377,
由上可得,y与x(1≤x<10)之间的函数解析式是y=﹣3x2+60x+80,第9天时销售利润最大,最大利润是377元.
23.(10分)(1)【操作发现】
如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.
①请按要求画图:将△ABC绕点A顺时针方向旋转90°,点B的对应点为点B′,点C的对应点为点C′.连接BB′;
②在①中所画图形中,∠AB′B= 45 °.
(2)【问题解决】
如图2,在Rt△ABC中,BC=1,∠C=90°,延长CA到D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE,连接DE,求∠ADE的度数.
(3)【拓展延伸】
如图3,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=1,CD=3,AD=kAB(k为常数),求BD的长(用含k的式子表示).
【分析】(1)①根据旋转角,旋转方向画出图形即可.
②只要证明△ABB′是等腰直角三角形即可.
(2)如图2,过点E作EH⊥CD交CD的延长线于H.证明△ABC≌△EAH(AAS)即可解决问题.
(3)如图3中,由AE⊥BC,BE=EC,推出AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,只要证明∠GDC=90°,可得CG=,由此即可解决问题.
【解答】解:(1)①如图,△AB′C′即为所求.
②由作图可知,△ABB′是等腰直角三角形,
∴∠AB′B=45°,
故答案为45.
(2)如图2中,过点E作EH⊥CD交CD的延长线于H.
∵∠C=∠BAE=∠H=90°,
∴∠B+∠CAB=90°,∠CAB+∠EAH=90°,
∴∠B=∠EAH,
∵AB=AE,
∴△ABC≌△EAH(AAS),
∴BC=AH,EH=AC,
∵BC=CD,
∴CD=AH,
∴DH=AC=EH,
∴∠EDH=45°,
∴∠ADE=135°.
(3)如图③中,∵AE⊥BC,BE=EC,
∴AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,
∵∠BAD=∠CAG,
∴∠BAC=∠DAG,
∵AB=AC,AD=AG,
∴∠ABC=∠ACB=∠ADG=∠AGD,
∴△ABC∽△ADG,
∵AD=kAB,
∴DG=kBC=2k,
∵∠BAE+∠ABC=90°,∠BAE=∠ADC,
∴∠ADG+∠ADC=90°,
∴∠GDC=90°,
∴CG==.
∴BD=CG=.
24.(12分)如图1,抛物线y=x2+bx+c交x轴于A,B两点,其中点A的坐标为(1,0),与y轴交于点C(0,﹣3).
(1)求抛物线的函数解析式;
(2)点D为y轴上一点,如果直线BD与直线BC的夹角为15°,求线段CD的长度;
(3)如图2,连接AC,点P在抛物线上,且满足∠PAB=2∠ACO,求点P的坐标.
【分析】(1)将点A,点C坐标代入解析式可求解;
(2)先求出点B坐标,可得OB=OC,可得∠OBC=∠OCB=45°,再分点D在点C上方或下方两种情况讨论,由锐角三角函数可求解;
(3)在BO上截取OE=OA,连接CE,过点E作EF⊥AC,由“SAS”可证△OCE≌△OCA,可得∠ACO=∠ECO,CE=AC=,由面积法可求EF的长,由勾股定理可求CF的长,可求tan∠ECA=tan∠PAB=,分点P在AB上方和下方两种情况讨论,求出AP解析式,联立方程组可求点P坐标.
【解答】解:(1)∵抛物线y=x2+bx+c交x轴于点A(1,0),与y轴交于点C(0,﹣3),
∴,
解得:,
∴抛物线解析式为:y=x2+2x﹣3;
(2)∵抛物线y=x2+2x﹣3与x轴于A,B两点,
∴点B(﹣3,0),
∵点B(﹣3,0),点C(0,﹣3),
∴OB=OC=3,
∴∠OBC=∠OCB=45°,
如图1,当点D在点C上方时,
∵∠DBC=15°,
∴∠OBD=30°,
∴tan∠DBO==,
∴OD=×3=,
∴CD=3﹣;
若点D在点C下方时,
∵∠DBC=15°,
∴∠OBD=60°,
∴tan∠DBO==,
∴OD=3,
∴DC=3﹣3,
综上所述:线段CD的长度为3﹣或3﹣3;
(3)如图2,在BO上截取OE=OA,连接CE,过点E作EF⊥AC,
∵点A(1,0),点C(0,﹣3),
∴OA=1,OC=3,
∴AC===,
∵OE=OA,∠COE=∠COA=90°,OC=OC,
∴△OCE≌△OCA(SAS),
∴∠ACO=∠ECO,CE=AC=,
∴∠ECA=2∠ACO,
∵∠PAB=2∠ACO,
∴∠PAB=∠ECA,
∵S△AEC=AE×OC=AC×EF,
∴EF==,
∴CF===,
∴tan∠ECA==,
如图2,当点P在AB的下方时,设AO与y轴交于点N,
∵∠PAB=∠ECA,
∴tan∠ECA=tan∠PAB==,
∴ON=,
∴点N(0,),
又∵点A(1,0),
∴直线AP解析式为:y=x﹣,
联立方程组得:,
解得:或,
∴点P坐标为:(﹣,﹣),
当点P在AB的上方时,同理可求直线AP解析式为:y=﹣x+,
联立方程组得:,
解得:或,
∴点P坐标为:(﹣,),
综上所述:点P的坐标为(﹣,),(﹣,﹣).
相关资料
更多