![2020届二轮复习已知函数增或减,导数符号不改变学案(全国通用)第1页](http://img-preview.51jiaoxi.com/3/3/5680620/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020届二轮复习已知函数增或减,导数符号不改变学案(全国通用)
展开
【题型综述】用导数研究函数的单调性(1)用导数求函数的单调区间求函数的定义域→求导→解不等式>0得解集→求,得函数的单调递增(减)区间.一般地,函数在某个区间可导,>0在这个区间是增函数一般地,函数在某个区间可导,<0在这个区间是减函数(2)单调性的应用(已知函数单调性)一般地,函数在某个区间可导,在这个区间是增(减)函数≥。常用思想方法:函数在某区间上单调递增,说明导数大于或等于零恒成立.,而函数在某区间上单调递减,说明导数小于或等于零恒成立. 【典例指引】例1.已知函数, .⑴ 若曲线在点处的切线经过点,求实数的值;⑵ 若函数在区间上单调,求实数的取值范围.【思路引导】(1)根据题意,对函数求导,由导数的几何意义分析可得曲线 在点处的切线方程,代入点,计算可得答案;
(2)由函数的导数与函数单调性的关系,分函数在(上单调增与单调减两种情况讨论,综合即可得答案;
若函数在区间上单调递增,则在恒成立,,得; &若函数在区间上单调递减,则在恒成立,,得, 综上,实数的取值范围为例2.已知函数.(x>0)(1)当时,求函数的单调区间;(2)若在上是单调增函数,求实数a的取值范围.【思路引导】(1)函数求导,令得函数增区间,令得函数的减区间;(2)函数为上单调增函数,只需在上恒成立即可.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出.导数专题在高考中的命题方向及命题角度:从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用.例3.已知函数.(1)若曲线在点处的切线的倾斜角为,求实数的值;(2)若函数在区间上单调递增,求实数的范围【思路引导】(1)根据切线的倾斜角为得到切线的斜率,根据导数的几何意义可以知道处的导数即为切线的斜率,建立等量关系,求出a即可;
(2)根据函数在区间上单调递增,可转化成,对恒成立,将参数a分离,转化成当时,不等式恒成立,利用均值不等式求出不等式右边函数的最小值,进而得实数a的范围
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)