2020届广西省柳州市高三一模考试数学(文)试卷(PDF版)
展开
文科数学(参考答案)
一、选择题:(每小题5分, 满分60分)
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
A | A | C | B | D | B | A | B | B | D | D | B |
二、填空题:(本大题共4小题,每小题5分,共20分)
13. 14. 15. 16.
三、解答题:(本大题共6小题,共70分)
17.解:(1)设等比数列的公比为,由题意得
,………………………2分 解得,……………………4分
所以.……………………………………………………………6分
(2)由(1)得, ……………………………………………7分
,……………………………………8分
∴,………………9分
∴…………………11分
……………………………………………12分
18.解:(1)由山下试验田4株青蒿样本青蒿素产量数据,得样本平均数:
……………………………………2分
则山下试验田100株青蒿的青蒿素的总产量S估算为:S=g. ………4分
(2)由样本中山上、山下单株青蒿素产量的离散程度知 ……………6分
(3) 记为事件A
列表:
由上表可以看出,这2株的产量总和n的所有情况共有16种,………………9分
而其中的情况共有6种, ……………………………………………10分
故: ……………………………………………………12分
19.证明:(1)因为,.∴,是等腰直角三角形, 故.…1分
因为,,………………………………2分
∴,,即.………………3分
因为侧面底面,交线为,∴平面, …………………………4分
∴平面平面; ………………………………………5分
(2)设,在中,则,可得,…………6分
过作交直线于点,则,………7分
易知平面,又三棱锥的体积为,则 ,解得,……………8分
∴ ……………………………………9分
∴ …………………………………10分
又,, …………………………………………………11分
则侧面的面积.……………12分
20.解:(1)∵ …………………………………………………1分
∴当时,,则 ………………2分
又∵ ………3分 ∴其切线方程为即 …………4分
(2)∵,∴ ……5分
令得 …………………………………………6分
∴当时, 恒成立,∴在上递增,无极值. ………7分
∴当时,令得, 或即在,上递增,在递减
∴,……………………………………8分
………………………………………………9分
∵当时, 在上递增,递减.∴, ………10分
, ……………………………………11分
综上所述:①时,无极值;②时,极大值为,极小值为.③时,极大值为,极小值为.……………12分
21.解:(1)由已知,圆经过椭圆的左、右焦点,,∵三点共线,
∴为圆的直径,即得,∵,∴,……1分
∴,……………………………………………………………2分
,,∵,解得,, ……………4分
∴椭圆的方程 : ………………………………………………5分
(2)点的坐标,∵,所以直线的斜率为, ………………6分
故设直线的方程为, ∴ , ∴,
设,,∴ , , ,∴……8分
,点到直线的距离,
,…………10分
当且仅当,即, …………………………………………11分
直线的方程为.………………………………………………12分
22.解:(1) ………………………1分
故的极坐标方程为. …………………………2分
而的直角坐标方程为 …………………………3分
的极坐标方程为. ……………………………………4分
(2)直线分别与联立得,则 …………5分
,则 ………………………………6分
, …………………………………7分
………………………………8分
……………………………………9分
则当时, 有最大值. …………………………10分
23.解:(1)∵,当时,解得; …………………1分
当时,解得;…………………………………2分
当时,不等式无解. ……………………………………………3分
故不等式的解集为, ………………………4分
所以集合. ………………………………………5分
(2)由(1)可知, …………………………………………………6分
∴,……………………………………………………7分
由柯西不等式得
,…………8分
整理得,……………………………………………………………9分
当且仅当,即时取等号. …………………………10分