开学活动
搜索
    上传资料 赚现金

    2024-2025学年广东省惠州市高二(上)期末数学试卷(含答案)

    2024-2025学年广东省惠州市高二(上)期末数学试卷(含答案)第1页
    2024-2025学年广东省惠州市高二(上)期末数学试卷(含答案)第2页
    2024-2025学年广东省惠州市高二(上)期末数学试卷(含答案)第3页
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年广东省惠州市高二(上)期末数学试卷(含答案)

    展开

    这是一份2024-2025学年广东省惠州市高二(上)期末数学试卷(含答案),共8页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
    1.已知{an}为等差数列,a2=3,a6=11,则a4等于( )
    A. 7B. 6C. 475D. 315
    2.已知空间向量a=(2,−3,0),b=(m,2,−1),若a⊥b,则实数m等于( )
    A. −3B. −1C. 1D. 3
    3.已知点A(−3,4),B(2,2),直线y=kx−2与直线AB平行,则实数k等于( )
    A. 25B. −25C. 52D. −52
    4.椭圆可看成是圆被压扁或拉伸形成的.下列椭圆中,形状更接近圆的是( )
    A. x225+y29=1B. x225+y216=1C. x25+y29=1D. x24+y2=1
    5.如图,在平行六面体ABCD−A1B1C1D1中,M为AC和BD的交点,若AB=a,AD=b,AA1=c,则下列式子中与MB1相等的是( )
    A. 12a−12b+c
    B. 12a+12b−c
    C. −12a+12b+c
    D. −12a−12b+c
    6.已知空间向量a=(3,0,4),b=(1, 3,0),则向量b在向量a上的投影向量是( )
    A. 32(1, 3,0)B. 34(1, 3,0)C. 325(3,0,4)D. 35(3,0,4)
    7.若直线ax+by=1与圆x2+y2=1有两个公共点,则点P(a,b)与圆的位置关系是( )
    A. 点P在圆上B. 点P在圆外C. 点P在圆内D. 以上都有可能
    8.如图所示的试验装置中,两个正方形框架ABCD、ABEF的边长都是1,且它们所在的平面互相垂直.长度为1的金属杆端点N在对角线BF上移动,另一个端点M在正方形ABCD内(含边界)移动,且始终保持MN⊥AB,则端点M的轨迹长度为( )
    A. π2
    B. 2
    C. 1
    D. π4
    二、多选题:本题共3小题,共18分。在每小题给出的选项中,有多项符合题目要求。
    9.已知圆C:x2+y2−4x−6y−3=0,直线l:ax−y−a−1=0(其中a为参数),则下列选项正确的是( )
    A. 圆心坐标为(2,3)B. 若直线l与圆C相交,弦长最大值为12
    C. 直线l过定点(0,−a−1)D. 当a=−815时,直线l与圆C相切
    10.已知数列{an}的前n项和为Sn,若Sn=k⋅2n−1,k∈R,则下列选项正确的是( )
    A. 数列{an}的首项不可能为0B. 当k≠0时,{an}偶数项的符号相同
    C. 当k=1时,{an}一定是等比数列D. 当k≠1时,{an}有可能是等比数列
    11.在正三棱柱ABC−A1B1C1中,AB=AA1=1,点P满足BP=λBC+μBB1,其中λ∈[0,1],μ∈[0,1],则( )
    A. 当λ=1时,△AB1P的周长为定值
    B. 当μ=1时,三棱锥P−A1BC的体积为定值
    C. 当λ=12时,有且仅有一个点P,使得A1P⊥BP
    D. 当μ=12时,有且仅有一个点P,使得A1B⊥平面AB1P
    三、填空题:本题共3小题,每小题5分,共15分。
    12.过抛物线y2=4x的焦点F作直线l,交抛物线于点A,若点A的横坐标为3,则|AF|等于______.
    13.在空间直角坐标系中,已知向量a=( 3,1,0)和向量b=(x,y,z),如果〈a,b〉=π3,则向量b的坐标可以是:______.(注:写出一个具体的坐标即可)
    14.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数,他们根据沙粒或小石子所排列的形状把数分成许多类,如图中第一行的1,3,6,10称为三角形数,第二行的1,4,9,16称为正方形数,第三行的1,5,12,22称为五边形数,则正方形数所构成的数列的第5项是______,五边形数所构成的数列{an}的通项公式为______.
    四、解答题:本题共5小题,共77分。解答应写出文字说明,证明过程或演算步骤。
    15.(本小题13分)
    已知圆x2+y2=8内有一点P0(−1,2),AB为过点P0且倾斜角为α的弦.
    (1)当α=3π4时,求|AB|的长;
    (2)当弦AB被点P0平分时,写出直线AB的方程.
    16.(本小题15分)
    设数列{an}满足a1+3a2+⋯+(2n−1)an=n.
    (1)证明;数列{1an}为等差数列;
    (2)求数列{an2n+1}的前n项和Sn.
    17.(本小题15分)
    我们知道,当一束光线照到镜面时,光线会依一定的规律反射,即反射角等于入射角(如图所示).依据此物理定律,解决以下问题.
    已知抛物线C:y2=4x,其焦点为F,直线l:y=kx+2与抛物线C相切于点P.
    (1)求直线l的方程;
    (2)从点F发出的光线经过抛物线上的点P反射,证明:反射光线平行于抛物线的对称轴.
    18.(本小题17分)
    如图,正四棱锥P−ABCD的底面边长和高均为2,E、F分别是PD和PB的中点.
    (1)证明:EF⊥PC;
    (2)若点M满足PM=λPC,且点M在平面AEF内,求λ的值;
    (3)求直线PB与平面AEF所成角的正弦值.
    19.(本小题17分)
    通过研究,已知对任意平面向量AB=(x,y),把AB绕其起点A沿逆时针方向旋转θ角得到向量AP=(xcsθ−ysinθ,xsinθ+ycsθ),叫做把点B绕点A逆时针方向旋转θ角得到点P.
    (1)已知平面内点A(− 3,2 3),点B( 3,−2 3),把点B绕点A逆时针旋转π3得到点P,求点P的坐标;
    (2)已知二次方程x2+y2−xy=1的图像是由平面直角坐标系下某标准椭圆x2a2+y2b2=1(a>b>0)绕原点O逆时针旋转π4所得的斜椭圆C.
    (i)求斜椭圆C的离心率;
    (ⅱ)过点Q( 23, 23)作与两坐标轴都不平行的直线l1交斜椭圆C于点M、N,过原点O作直线l2与直线l1垂直,直线l2交斜椭圆C于点G、H,判断 2|MN|+1|OH|2是否为定值,若是,请求出定值,若不是,请说明理由.
    参考答案
    1.A
    2.D
    3.B
    4.B
    5.A
    6.C
    7.B
    8.A
    9.AD
    10.BC
    11.BD
    12.4
    13.(0,1,0)(答案不唯一)
    14.25 an=n×(3n−1)2
    15.解:(1)当α=34π时,直线AB的方程为y−2=−(x+1),即x+y−1=0,
    设圆心到直线AB的距离为d,则d=−1 2= 22,
    ∴|AB|=2 r2−d2= 30.
    (2)当弦AB被点P0平分时,OP0⊥AB,
    ∵kOP0=−2,
    ∴kAB=12,
    ∴直线AB的方程为y−2=12(x+1),即x−2y+5=0.
    16.(1)证明:由a1+3a2+⋯+(2n−1)an=n,①
    得a1=1,
    当n≥2时,a1+3a2+⋯+(2n−3)an−1=n−1,②
    ①−②得:(2n−1)an=1,则1an=2n−1,
    ∵1an+1−1an=2(n+1)−1−2n+1=2,
    ∴数列{1an}是公差为2的等差数列;
    (2)解:∵an2n+1=1(2n−1)(2n+1)=12(12n−1−12n+1),
    ∴数列{an2n+1}的前n项和Sn=12(1−13+13−15+...+12n−1−12n+1)
    =12(1−12n+1)=n2n+1.
    17.解:(1)联立y=kx+2y2=4x,可得k2x2+4(k−1)x+4=0,
    令Δ=16(k−1)2−16k2=0,可得k=12,
    ∴直线l的方程为y=12x+2,即x−2y+4=0;
    (2)证明:由(1)可得P为(4,4),
    ∴法线(过P且垂直直线l)的方程为y−4=−2(x−4),
    令y=0,可得法线与x轴的交点为A(6,0),又F(1,0),
    ∴|FP|=p2+xP=1+4=5,|FA|=5,
    ∴|FP|=|FA|,设反射光线为PT,
    ∴∠FAP=∠FPA=TPA,
    ∴反射光线平行于x轴,
    即反射光线平行于抛物线的对称轴.
    18.(1)证明:连接AC、BD交于O,连接OP,由正四棱锥的性质可得PO⊥平面ABCD,底面ABCD为正方形,则AC⊥BD,
    所以以O为坐标原点,OA、OB、OP所在直线分别为x、y、z轴建立空间直角坐标系,

    则A( 2,0,0),B(0, 2,0),P(0,0,2),C(− 2,0,0),D(0,− 2,0),E(0,− 22,1),F(0, 22,1),
    则EF=(0, 2,0),PC=(− 2,0,−2),则EF⋅PC=0,
    所以EF⊥PC.
    (2)解:由(1)得AP=(− 2,0,2),PM=λPC=(− 2λ,0,−2λ),
    因此AM=AP+PM=(− 2− 2λ,0,2−2λ),
    设平面AEF的法向量n=(x,y,z),由n⋅AE=0n⋅AF=0,得− 2x− 22y+z=0− 2x+ 22y+z=0,
    令x=1,则z= 2,y=0,所以n=(1,0, 2),
    由于点M在平面AEF内,则AM⊥n,则AM⋅n=0,
    即− 2− 2λ+ 2(2−2λ)=0,
    解得λ=13.
    (3)PB=(0, 2,−2),
    由(2)可得平面AEF的法向量n=(1,0, 2),
    所以cs=PB⋅n|PB|⋅|n|=−2 2 6⋅ 3=−23,
    所以直线PB与平面AEF所成角的正弦值为23.
    19.解:(1)由已知得AB=(2 3,−4 3),
    所以AP=(6+ 3,3−2 3),
    不妨设P(x0,y0),
    此时AP=(x0+ 3,y0−2 3)=(6+ 3,3−2 3),
    解得x0=6,y0=3,
    则点P的坐标为(6,3);
    (2)(i)联立直线y=x与x2+y2−xy=1,
    解得直线与椭圆交点为(1,1)和(−1,−1),则a2=2,
    由y=−x与x2+y2−xy=1交点为(− 33, 33)和( 33,− 33),
    则b2=23.
    所以c2=43,e=2 33 2= 63.
    (ii)设直线l1:y− 2 3=k(x− 2 3),
    与斜椭圆x2+y2−xy=1联立得:(k2−k+1)x2+ 2 3(3k−2k2−1)x+23(1−k)2−1=0,
    ∵x1+x2= 2 32k2−3k+1k2−k+1,x1x2=23k2−2k−12k2−k+1,
    ∴|MN|= (1+k2)[(x1+x2)2−4x1x2]= (1+k2)[( 2 32k2−3k+1k2−k+1)2−4×23k2⋅2k−12k2−k+1]= 2(1+k2)k2−k+1,
    设直线l2:y=−1kx,与斜椭圆x2+y2−xy=1联立得x2+1k2x2+1kx2=1,
    ∴x2=k2k2+k+1,∴|OH|2=k2+1k2+k+1,
    故 2|MN|+1|OH|2=k2−k+1k2+1+k2+k+1k2+1=2.
    即 2|MN|+1|OH|2为定值2.

    相关试卷

    广东省惠州市2024-2025学年高二上学期期末数学试卷(含答案):

    这是一份广东省惠州市2024-2025学年高二上学期期末数学试卷(含答案),共8页。

    2024-2025学年广东省深圳市光明区高二(上)期末数学试卷(含答案):

    这是一份2024-2025学年广东省深圳市光明区高二(上)期末数学试卷(含答案),共9页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2024~2025学年广东省惠州市高二上期末数学试卷(含答案):

    这是一份2024~2025学年广东省惠州市高二上期末数学试卷(含答案),共8页。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map