开学活动
搜索
    上传资料 赚现金

    2024年中考数学几何模型归纳训练(通用版)专题13全等模型-倍长中线与截长补短模型(原卷版+解析)

    2024年中考数学几何模型归纳训练(通用版)专题13全等模型-倍长中线与截长补短模型(原卷版+解析)第1页
    2024年中考数学几何模型归纳训练(通用版)专题13全等模型-倍长中线与截长补短模型(原卷版+解析)第2页
    2024年中考数学几何模型归纳训练(通用版)专题13全等模型-倍长中线与截长补短模型(原卷版+解析)第3页
    还剩62页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年中考数学几何模型归纳训练(通用版)专题13全等模型-倍长中线与截长补短模型(原卷版+解析)

    展开

    这是一份2024年中考数学几何模型归纳训练(通用版)专题13全等模型-倍长中线与截长补短模型(原卷版+解析),共65页。试卷主要包含了倍长中线模型,截长补短模型等内容,欢迎下载使用。
    模型1.倍长中线模型
    【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.(注:一般都是原题已经有中线时用,不太会有自己画中线的时候)。
    【常见模型及证法】
    1、基本型:如图1,在三角形ABC中,AD为BC边上的中线.
    证明思路:延长AD至点E,使得AD=DE. 若连结BE,则;若连结EC,则;
    2、中点型:如图2,为的中点.
    证明思路:若延长至点,使得,连结,则;
    若延长至点,使得,连结,则.
    3、中点+平行线型:如图3, ,点为线段的中点.
    证明思路:延长交于点 (或交延长线于点),则.
    例1.(2023·江苏徐州·模拟预测)(1)阅读理解:
    如图①,在中,若,,求边上的中线的取值范围.
    可以用如下方法:将绕着点逆时针旋转得到,在中,利用三角形三边的关系即可判断中线的取值范围是______;
    (2)问题解决:如图②,在中,是边上的中点,于点,交于点,交于点,连接,求证:;
    (3)问题拓展:如图③,在四边形中,,,,以为顶点作一个的角,角的两边分别交、于、两点,连接,探索线段,,之间的数量关系,并说明理由.
    例2.(2023·贵州毕节·二模)课外兴趣小组活动时,老师提出了如下问题:
    (1)如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考帮小明完成解答过程.
    (2)如图2,AD是△ABC的中线,BE交AC干E,交AD于F,且AE=EF.请判昕AC与BF的数量关系,并说明理由.
    例3.(2022·山东·安丘市一模)阅读材料:如图1,在中,D,E分别是边AB,AC的中点,小亮在证明“三角形的中位线平行于第三边,且等于第三边的一半”时,通过延长DE到点F,使,连接CF,证明,再证四边形DBCF是平行四边形即得证.
    类比迁移:(1)如图2,AD是的中线,E是AC上的一点,BE交AD于点F,且,求证:.
    小亮发现可以类比材料中的思路进行证明.
    证明:如图2,延长AD至点M,使,连接MC,……请根据小亮的思路完成证明过程.
    方法运用:(2)如图3,在等边中,D是射线BC上一动点(点D在点C的右侧),连接AD.把线段CD绕点D逆时针旋转120°得到线段DE,F是线段BE的中点,连接DF、CF.请你判断线段DF与AD的数量关系,并给出证明.
    例4.(2022·河南商丘·一模)阅读材料
    如图1,在△ABC中,D,E分别是边AB,AC的中点,小明在证明“三角形的中位线平行于第三边,且等于第三边的一半”时,通过延长DE到点F,使EF=DE,连接CF,证明△ADE≌△CFE,再证四边形DBCF是平行四边形即得证. (1)类比迁移:如图2,AD是△ABC的中线,BE交AC于点E,交AD于点F,且AE=EF,求证:AC=BF.小明发现可以类比材料中的思路进行证明.
    证明:如图2,延长AD至点M,使MD=FD,连接MC,……请根据小明的思路完成证明过程.
    (2)方法运用:如图3,在等边△ABC中,D是射线BC上一动点(点D在点C的右侧),连接AD.把线段CD绕点D逆时针旋转120°得到线段DE.F是线段BE的中点,连接DF,CF.请你判断线段DF与AD的数量关系,并给出证明;
    模型2.截长补短模型
    【模型解读】
    截长补短的方法适用于求证线段的和差倍分关系。该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程,截长补短法(往往需证2次全等)。
    截长:指在长线段中截取一段等于已知线段;补短:指将短线段延长,延长部分等于已知线段。
    【常见模型及证法】
    (1)截长:在较长线段上截取一段等于某一短线段,再证剩下的那一段等于另一短线段。
    例:如图,求证BE+DC=AD

    方法: = 1 \* GB3 ①在AD上取一点F,使得AF=BE,证DF=DC; = 2 \* GB3 ②在AD上取一点F,使DF=DC,证AF=BE
    (2)补短:将短线段延长,证与长线段相等
    例:如图,求证BE+DC=AD
    方法: = 1 \* GB3 ①延长DC至点M处,使CM=BE,证DM=AD; = 2 \* GB3 ②延长DC至点M处,使DM=AD,证CM=BE
    例1.(2023·重庆·九年级专题练习)如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.
    例2.(2023·广东肇庆·校考一模)课堂上,老师提出了这样一个问题:
    如图1,在中,平分交于点D,且,求证:,小明的方法是:如图2,在上截取,使,连接,构造全等三角形来证明.
    (1)小天提出,如果把小明的方法叫做“截长法”,那么还可以用“补短法”通过延长线段构造全等三角形进行证明.辅助线的画法是:延长至F,使=______,连接请补全小天提出的辅助线的画法,并在图1中画出相应的辅助线;
    (2)小芸通过探究,将老师所给的问题做了进一步的拓展,给同学们提出了如下的问题:
    如图3,点D在的内部,分别平分,且.求证:.请你解答小芸提出的这个问题(书写证明过程);
    (3)小东将老师所给问题中的一个条件和结论进行交换,得到的命题如下:
    如果在中,,点D在边上,,那么平分小东判断这个命题也是真命题,老师说小东的判断是正确的.请你利用图4对这个命题进行证明.
    例3.(2023·广西·九年级专题练习)在四边形ABDE中,C是BD边的中点.
    (1)如图(1),若AC平分∠BAE,∠ACE=90°,则线段AE、AB、DE的长度满足的数量关系为 ;(直接写出答案);(2)如图(2),AC平分∠BAE,EC平分∠AED,若∠ACE=120°,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明.
    例4.(2023·广东·九年级期末)(1)阅读理解:问题:如图1,在四边形中,对角线平分,.求证:.
    思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.
    方法1:在上截取,连接,得到全等三角形,进而解决问题;
    方法2:延长到点,使得,连接,得到全等三角形,进而解决问题.
    结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.
    (2)问题解决:如图2,在(1)的条件下,连接,当时,探究线段,,之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形中,,,过点D作,垂足为点E,请直接写出线段、、之间的数量关系.
    课后专项训练:
    1.(2023秋·福建福州·九年级校考阶段练习)如图,在△ABC中,AB=4,AC=2,点D为BC的中点,则AD的长可能是( )
    A.1B.2C.3D.4
    2.(2022·浙江湖州·二模)如图,在四边形中,,,,,,点是的中点,则的长为( ).
    A.2B.C.D.3
    3.(2022·广东湛江·校考二模)已知:如图,中,E在上,D在上,过E作于F,,,,则的长为 ___________.
    4.(2023秋·江西九江·八年级校考期末)如图,在△ABC中,点D是BC的中点,若AB=5,AC=13,AD=6,则BC的长为 .
    5.(2023秋·湖北武汉·八年级校考阶段练习)(1)阅读理解:如图1,在中,若,.求边上的中线的取值范围,小聪同学是这样思考的:延长至,使,连接.利用全等将边转化到,在中利用三角形三边关系即可求出中线的取值范围,在这个过程中小聪同学证三角形全等用到的判定方法是___________,中线的取值范围是___________;
    (2)问题解决:如图2,在中,点是的中点,.交于点,交于点.求证:;
    (3)问题拓展:如图3,在中,点是的中点,分别以为直角边向外作和,其中,,,连接,请你探索与的数量与位置关系.

    6.(2023·黑龙江大庆·统考三模)如图,四边形中,°,为边上一点,连接,,为的中点,延长交的延长线于点,交于点,连接交于点.
    (1)求证;(2)若,,求证:四边形为矩形.

    7.(2023·广东云浮·八年级统考期中)(1)阅读理解:如图①,在中,若,求边上的中线的取值范围.可以用如下方法:将绕着点D逆时针旋转得到,在中,利用三角形三边的关系即可判断中线的取值范围是_______;
    (2)问题解决:如图②,在中,D是边上的中点,于点D,交于点E,DF交于点F,连接,求证:;
    (3)问题拓展:如图③,在四边形中,,,,以C为顶点作一个的角,角的两边分别交于E、F两点,连接EF,探索线段之间的数量关系,并说明理由.
    8.(2023·江苏·九年级假期作业)(1)如图1,AD是△ABC的中线,延长AD至点E,使ED=AD,连接CE.
    ①证明△ABD≌△ECD;②若AB=5,AC=3,设AD=x,可得x的取值范围是_______;
    (2)如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF.

    9.(2022秋·北京昌平·九年级校联考期中)如图,O为四边形ABCD内一点,E为AB的中点,OA=OD,OB=OC,∠AOB+∠COD=.(1)若∠BOE=∠BAO,AB=,求OB的长;
    (2)用等式表示线段OE和CD之间的关系,并证明.
    10.(2022秋·安徽·九年级校联考阶段练习)安安利用两张正三角形纸片,进行了如下探究:

    【探究证明】(1)如图1,和均为等边三角形,连接交延长线于点,求证:;
    【拓展延伸】(2)如图2,在正三角形纸片的边上取一点,作交外角平分线于点,探究,和的数量关系,并证明;
    【思维提升】(3)如图3,和均为正三角形,当,,三点共线时,连接,若,直接写出下列两式分别是否为定值,并任选其中一个进行证明:①;②.
    11.(2023秋·河南驻马店·八年级统考期末)(1)阅读理解:
    问题:如图1,在四边形中,对角线平分,.求证:.
    思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.
    方法1:在上截取,连接,得到全等三角形,进而解决问题;
    方法2:延长到点,使得,连接,得到全等三角形,进而解决问题.
    结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.
    (2)问题解决:如图2,在(1)的条件下,连接,当时,探究线段,,之间的数量关系,并说明理由;
    (3)问题拓展:如图3,在四边形中,,,过点作,垂足为点,请写出线段、、之间的数量关系并说明理由.
    12.(2023·浙江衢州·校考一模)如图1,在中,,平分,连接,,.
    (1)求的度数;(2)如图2,连接,交于E,连接,求证:;
    (3)如图3,在(2)的条件下,点G为的中点,连接交于点F,若,求线段的长.
    13.(2023春·广东·九年级专题练习)课堂上,老师提出了这样一个问题:
    如图1,在中,平分交于点D,且,求证:,小明的方法是:如图2,在上截取,使,连接,构造全等三角形来证明.
    (1)小天提出,如果把小明的方法叫做“截长法”,那么还可以用“补短法”通过延长线段构造全等三角形进行证明.辅助线的画法是:延长至F,使=______,连接请补全小天提出的辅助线的画法,并在图1中画出相应的辅助线;
    (2)小芸通过探究,将老师所给的问题做了进一步的拓展,给同学们提出了如下的问题:
    如图3,点D在的内部,分别平分,且.求证:.请你解答小芸提出的这个问题(书写证明过程);
    (3)小东将老师所给问题中的一个条件和结论进行交换,得到的命题如下:
    如果在中,,点D在边上,,那么平分小东判断这个命题也是真命题,老师说小东的判断是正确的.请你利用图4对这个命题进行证明.
    14.(2023春·广东深圳·九年级校考期中)如图,△ABC为等边三角形,直线l过点C,在l上位于C点右侧的点D满足∠BDC=60°。(1)如图1,在l上位于C点左侧取一点E,使∠AEC=60°,求证:△AEC≌△CDB;
    (2)如图2,点F、G在直线l上,连AF,在l上方作∠AFH=120°,且AF=HF,∠HGF=120°,求证:HG+BD=CF;(3)在(2)的条件下,当A、B位于直线l两侧,其余条件不变时(如图3),线段HG、CF、BD的数量关系为 .
    15.(2022·河南·模拟预测)(1)如图①,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,探究图中线段BE、EF、FD之间的数量关系.某同学做了如下探究,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应该是______.(2)如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且∠EAF=∠BAD,上述结论是否依然成立?若成立,请说明理由;若不成立,写出正确的结论,并说明理由.(3)如图③,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/时的速度前进,舰艇乙沿北偏东50°的方向以80海里/时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.

    16.(2022·河南·九年级期中)课外兴趣小组活动时,老师提出了如下问题:如图 1,在△ABC 中,若 AB=5,AC=3,求 BC 边上的中线 AD 的取值范围. 小明在组内经过合作交流,得到了如下的解决方法:延长 AD 到 E,使得 DE=AD,再连接 BE(或将△ACD 绕点 D 逆时针旋转 180°得到△EBD),把 AB、AC、2AD 集中在△ABE 中, 利用三角形的三边关系可得 2<AE<8,则 1<AD<4.
    【感悟】解题时,条件中若出现中点、中线字样,可以考虑构造以中点为对称中心的中 心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.
    【解决问题】受到(1)的启发,请你证明下列命题:如图 2,在△ABC 中,D 是 BC 边上的中点, DE⊥DF,DE 交 AB 于点 E,DF 交 AC 于点 F,连接 EF.(1)求证:BE+CF>EF,
    (2)若∠A=90°,探索线段 BE、CF、EF 之间的等量关系,并加以证明.、
    17.(2022·山东东营·中考真题)已知点O是线段AB的中点,点P是直线l上的任意一点,分别过点A和点B作直线l的垂线,垂足分别为点C和点D.我们定义垂足与中点之间的距离为“足中距”.
    (1)[猜想验证]如图1,当点P与点O重合时,请你猜想、验证后直接写出“足中距”OC和OD的数量关系是________.(2)[探究证明]如图2,当点P是线段AB上的任意一点时,“足中距”OC和OD的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由.
    (3)[拓展延伸]如图3,当点P是线段BA延长线上的任意一点时,“足中距”OC和OD的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由;
    18.(2022·北京·中考真题)在中,,D为内一点,连接,,延长到点,使得(1)如图1,延长到点,使得,连接,,若,求证:;
    (2)连接,交的延长线于点,连接,依题意补全图2,若,用等式表示线段与的数量关系,并证明.
    19.(2022·内蒙古·中考真题)下面图片是八年级教科书中的一道题:如图,四边形是正方形,点是边的中点,,且交正方形外角的平分线于点.求证.(提示:取的中点,连接.)。(1)请你思考题中“提示”,这样添加辅助线的意图是得到条件: ;
    (2)如图1,若点是边上任意一点(不与、重合),其他条件不变.求证:;
    (3)在(2)的条件下,连接,过点作,垂足为.设,当为何值时,四边形是平行四边形,并给予证明.

    20.(2022·江苏·九年级期中)【问题情境】课外兴趣小组活动时,老师提出了如下问题:
    如图①,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.
    小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DE=AD,连接BE.请根据小明的方法思考:
    (1)由已知和作图能得到△ADC≌△EDB,依据是 .
    A.SAS;B. SSS;C. AAS;D. HL
    (2)由“三角形的三边关系”可求得AD的取值范围是 .
    解后反思:题目中出现“中点”、“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.
    (3)【初步运用】如图②,AD是△ABC的中线,BE交AC于E,交AD于F,且AC=BF.求证AE=FE.
    (4)【灵活运用】如图③,在△ABC中,∠A=90°,D为BC中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.试猜想线段BE、CF、EF三者之间的数量关系,并证明你的结论.
    专题13 全等模型-倍长中线与截长补短模型
    全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(倍长中线模型、截长补短模型)进行梳理及对应试题分析,方便掌握。
    模型1.倍长中线模型
    【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.(注:一般都是原题已经有中线时用,不太会有自己画中线的时候)。
    【常见模型及证法】
    1、基本型:如图1,在三角形ABC中,AD为BC边上的中线.
    证明思路:延长AD至点E,使得AD=DE. 若连结BE,则;若连结EC,则;
    2、中点型:如图2,为的中点.
    证明思路:若延长至点,使得,连结,则;
    若延长至点,使得,连结,则.
    3、中点+平行线型:如图3, ,点为线段的中点.
    证明思路:延长交于点 (或交延长线于点),则.
    例1.(2023·江苏徐州·模拟预测)(1)阅读理解:
    如图①,在中,若,,求边上的中线的取值范围.
    可以用如下方法:将绕着点逆时针旋转得到,在中,利用三角形三边的关系即可判断中线的取值范围是______;
    (2)问题解决:如图②,在中,是边上的中点,于点,交于点,交于点,连接,求证:;
    (3)问题拓展:如图③,在四边形中,,,,以为顶点作一个的角,角的两边分别交、于、两点,连接,探索线段,,之间的数量关系,并说明理由.
    【答案】(1);(2)见详解;(3),理由见详解
    【分析】(1)根据旋转的性质可证明,,在中根据三角形三边关系即可得出答案;(2)延长FD至M,使DF=DM,连接BM,EM,可得出,根据垂直平分线的性质可得出,利用三角形三边关系即可得出结论;
    (3)延长AB至N,使BN=DF,连接CN,可得,证明,得出,利用角的和差关系可推出,再证明,得出,即可得出结论.
    【详解】解:(1)∵
    ∴∴
    在中根据三角形三边关系可得出:,即
    ∴故答案为:;
    (2)延长FD至M,使DF=DM,连接BM,EM,

    同(1)可得出,∵∴
    在中,∴;
    (3),理由如下:延长AB至N,使BN=DF,连接CN,
    ∵∴
    ∴∴
    ∵∴
    ∴(SAS)∴
    ∴∴.
    【点睛】本题考查的知识点有旋转的性质、全等三角形的判定及性质、线段垂直平分线的性质、三角形三边关系、角的和差等,解答此题的关键是作出辅助线,构造出与图①中结构相关的图形.此题结构精巧,考查范围广,综合性强.
    例2.(2023·贵州毕节·二模)课外兴趣小组活动时,老师提出了如下问题:
    (1)如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考帮小明完成解答过程.
    (2)如图2,AD是△ABC的中线,BE交AC干E,交AD于F,且AE=EF.请判昕AC与BF的数量关系,并说明理由.
    【答案】(1)见解析(2)AC=BF,理由见解析
    【解析】(1)解:如图,延长AD到点E,使DE=AD,连接BE,
    在△ADC和△EDB中∵,∴△ADC≌△EDB(SAS).∴BE=AC=3.
    ∵AB-BE

    相关试卷

    全等模型-倍长中线与截长补短模型练习-中考数学专题:

    这是一份全等模型-倍长中线与截长补短模型练习-中考数学专题,文件包含全等模型-倍长中线与截长补短模型解析版pdf、全等模型-倍长中线与截长补短模型学生版pdf等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。

    中考数学专题练习13 全等模型-倍长中线与截长补短模型:

    这是一份中考数学专题练习13 全等模型-倍长中线与截长补短模型,文件包含中考数学13全等模型-倍长中线与截长补短模型教师版专题训练docx、中考数学13全等模型-倍长中线与截长补短模型学生版专题训练docx等2份试卷配套教学资源,其中试卷共62页, 欢迎下载使用。

    中考数学二轮复习几何模型归纳讲练专题13 全等模型-倍长中线与截长补短模型(2份打包,原卷版+教师版):

    这是一份中考数学二轮复习几何模型归纳讲练专题13 全等模型-倍长中线与截长补短模型(2份打包,原卷版+教师版),文件包含中考数学二轮复习几何模型归纳讲练专题13全等模型-倍长中线与截长补短模型原卷版doc、中考数学二轮复习几何模型归纳讲练专题13全等模型-倍长中线与截长补短模型教师版doc等2份试卷配套教学资源,其中试卷共64页, 欢迎下载使用。

    英语朗读宝
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map