搜索
    上传资料 赚现金
    英语朗读宝

    中考数学二轮培优复习专题09 几何中最小值计算压轴真题训练(2份,原卷版+解析版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      中考数学二轮培优复习专题09 几何中最小值计算压轴真题训练(原卷版).doc
    • 解析
      中考数学二轮培优复习专题09 几何中最小值计算压轴真题训练(解析版).doc
    中考数学二轮培优复习专题09  几何中最小值计算压轴真题训练(原卷版)第1页
    中考数学二轮培优复习专题09  几何中最小值计算压轴真题训练(原卷版)第2页
    中考数学二轮培优复习专题09  几何中最小值计算压轴真题训练(原卷版)第3页
    中考数学二轮培优复习专题09  几何中最小值计算压轴真题训练(解析版)第1页
    中考数学二轮培优复习专题09  几何中最小值计算压轴真题训练(解析版)第2页
    中考数学二轮培优复习专题09  几何中最小值计算压轴真题训练(解析版)第3页
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学二轮培优复习专题09 几何中最小值计算压轴真题训练(2份,原卷版+解析版)

    展开

    这是一份中考数学二轮培优复习专题09 几何中最小值计算压轴真题训练(2份,原卷版+解析版),文件包含中考数学二轮培优复习专题09几何中最小值计算压轴真题训练原卷版doc、中考数学二轮培优复习专题09几何中最小值计算压轴真题训练解析版doc等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。

    【答案】6
    【解答】解:如图,作点B关于AC的对称点B',交AC于点F,连接B′E交AC于点P,则PE+PB的最小值为B′E的长度,
    ∵四边形ABCD为矩形,
    ∴AB=CD=4,∠ABC=90°,
    在Rt△ABC中,AB=4,BC=4,
    ∴tan∠ACB==,
    ∴∠ACB=30°,
    由对称的性质可知,B'B=2BF,B'B⊥AC,
    ∴BF=BC=2,∠CBF=60°,
    ∴B′B=2BF=4,
    ∵BE=BF,∠CBF=60°,
    ∴△BEF是等边三角形,
    ∴BE=BF=B'F,
    ∴△BEB'是直角三角形,
    ∴B′E===6,
    ∴PE+PB的最小值为6,
    故答案为:6.
    2.(2022•自贡)如图,矩形ABCD中,AB=4,BC=2,G是AD的中点,线段EF在边AB上左右滑动,若EF=1,则GE+CF的最小值为 .
    【答案】3
    【解答】解:解法一:如图,作G关于AB的对称点G',在CD上截取CH=1,然后连接HG'交AB于E,在EB上截取EF=1,此时GE+CF的值最小,
    ∵CH=EF=1,CH∥EF,
    ∴四边形EFCH是平行四边形,
    ∴EH=CF,
    ∴G'H=EG'+EH=EG+CF,
    ∵AB=4,BC=AD=2,G为边AD的中点,
    ∴DG'=AD+AG'=2+1=3,DH=4﹣1=3,
    由勾股定理得:HG'==3,
    即GE+CF的最小值为3.
    解法二:∵AG=AD=1,
    设AE=x,则BF=AB﹣EF﹣AE=4﹣x﹣1=3﹣x,
    由勾股定理得:EG+CF=+,
    如图,矩形EFGH中,EH=3,GH=2,GQ=1,
    P为FG上一动点,设PG=x,则FP=3﹣x,
    ∴EP+PQ=+,
    当E,P,Q三点共线时,EP+PQ最小,最小值是3,
    即EG+CF的最小值是3.
    故答案为:3.
    3.(2022•鄂州)如图,定直线MN∥PQ,点B、C分别为MN、PQ上的动点,且BC=12,BC在两直线间运动过程中始终有∠BCQ=60°.点A是MN上方一定点,点D是PQ下方一定点,且AE∥BC∥DF,AE=4,DF=8,AD=24,当线段BC在平移过程中,AB+CD的最小值为( )
    A.24B.24C.12D.12
    【答案】C
    【解答】解:如图,
    作DL⊥PQ于L,过点A作PQ的垂线,过点D作PQ的平行线,它们交于点R,延长DF至T,使DT=BC=12,连接AT,
    AT交MN于B′,作B′C′∥BC,交PQ于C′,则当BC在B′C′时,AB+CD最小,最小值为AT的长,
    可得AK=AE•sin60°==2,DL==4,=6,
    ∴AR=2+6+4=12,
    ∵AD=24,
    ∴sin∠ADR==,
    ∴∠ADR=30°,
    ∵∠PFD9=60°,
    ∴∠ADT=90°,
    ∴AT===12,
    故答案为:C.
    4.(2022•贺州)如图,在矩形ABCD中,AB=8,BC=6,E,F分别是AD,AB的中点,∠ADC的平分线交AB于点G,点P是线段DG上的一个动点,则△PEF的周长最小值为 .
    【答案】5+
    【解答】解:如图,在DC上截取DT,使得DT=DE,连接FT,过点T作TH⊥AB于点H.
    ∵四边形ABCD是矩形,
    ∴∠A=∠ADT=90°,
    ∵∠AHT=90°,
    ∴四边形AHTD是矩形,
    ∵AE=DE=AD=3.AF=FB=AB=4,
    ∴AH=DT=3,HF=AF﹣AH=4﹣3=1,HT=AD=6,
    ∴FT===,
    ∵DG平分∠ADC,DE=DT,
    ∴E、T关于DG对称,
    ∴PE=PT,
    ∴PE+PF=PF+PT≥FT=,
    ∵EF===5,
    ∴△EFP的周长的最小值为5+,
    故答案为:5+.
    5.(2022•滨州)如图,在矩形ABCD中,AB=5,AD=10.若点E是边AD上的一个动点,过点E作EF⊥AC且分别交对角线AC、直线BC于点O、F,则在点E移动的过程中,AF+FE+EC的最小值为 .
    【答案】+
    【解答】解:如图,过点E作EH⊥BC于点H.
    ∵四边形ABCD是矩形,
    ∴∠B=∠BAD=∠BHE=90°,
    ∴四边形ABHE是矩形,
    ∴EH=AB=5,
    ∵BC=AD=10,
    ∴AC===5,
    ∵EF⊥AC,
    ∴∠COF=90°,
    ∴∠EFH+∠ACB=90°,
    ∵∠BAC+∠ACB=90°,
    ∴∠EFH=∠BAC,
    ∴△EHF∽△CBA,
    ∴==,
    ∴==,
    ∴FH=,EF=,
    设BF=x,则DE=10﹣x﹣=﹣x,
    ∵EF是定值,
    ∴AF+CE的值最小时,AF+EF+CE的值最小,
    ∵AF+CE=+,
    ∴欲求AF+CE的最小值相当于在x轴上找一点P(x,0),使得P到A(0,5),B(,5)的距离和最小,如图1中,
    作点A关于x轴的对称点A′,连接BA′交xz轴于点P,连接AP,此时PA+PB的值最小,最小值为线段A′B的长,
    ∵A′(0,﹣5),B(,5),
    ∴A′B==,
    ∴AF+CE的最小值为,
    ∴AF+EF+CE的最小值为+.
    解法二:过点C作CC′∥EF,使得CC′=EF,连接C′F.
    ∵EF=CC′,EF∥CC′,
    ∴四边形EFC′C是平行四边形,
    ∴EC=FC′,
    ∵EF⊥AC,
    ∴AC⊥CC′,
    ∴∠ACC=90°,
    ∵AC′===,
    ∴AF+EC=AF+FC′≥AC′=,
    ∴AF+EF+CE的最小值为+.
    故答案为:+
    二.胡不归问题
    6.(2022•鄂尔多斯)如图,在△ABC中,AB=AC=4,∠CAB=30°,AD⊥BC,垂足为D,P为线段AD上的一动点,连接PB、PC.则PA+2PB的最小值为 .
    【答案】4
    【解答】解:如图,
    在∠BAC的外部作∠CAE=15°,作BF⊥AE于F,交AD于P,
    此时PA+2PB最小,
    ∴∠AFB=90°
    ∵AB=AC,AD⊥BC,
    ∴∠CAD=∠BAD=,
    ∴∠EAD=∠CAE+∠CAD=30°,
    ∴PF=,
    ∴PA+2PB=2()=2(PF+PB)=2BF,
    在Rt△ABF中,AB=4,∠BAF=∠BAC+∠CAE=45°,
    ∴BF=AB•sin45°=4×=2,
    ∴(PA+2PB)最小=2BF=4,
    故答案为:4.
    三.旋转的性质
    7.(2022•黄石)如图,等边△ABC中,AB=10,点E为高AD上的一动点,以BE为边作等边△BEF,连接DF,CF,则∠BCF= ,FB+FD的最小值为 .
    【答案】30°5
    【解答】解:如图,
    ∵△ABC是等边三角形,AD⊥CB,
    ∴∠BAE=∠BAC=30°,
    ∵△BEF是等边三角形,
    ∴∠EBF=∠ABC=60°,BE=BF,
    ∴∠ABE=∠CBF,
    在△BAE和△BCF中,

    ∴△BAE≌△BCF(SAS),
    ∴∠BAE=∠BCF=30°,
    作点D关于CF的对称点G,连接CG,DG,BG,BG交CF的延长线于点F′,连接DF′,此时BF′+DF′的值最小,最小值=线段BG的长.
    ∵∠DCF=∠FCG=30°,
    ∴∠DCG=60°,
    ∵CD=CG=5,
    ∴△CDG是等边三角形,
    ∴DB=DC=DG,
    ∴∠CGB=90°,
    ∴BG===5,
    ∴BF+DF的最小值为5,
    故答案为:30°,5.
    8.(2022•柳州)如图,在正方形ABCD中,AB=4,G是BC的中点,点E是正方形内一个动点,且EG=2,连接DE,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,则线段CF长的最小值为 .
    【答案】2﹣2
    【解答】解:连接DG,将DG绕点D逆时针旋转90°得DM,连接MG,CM,MF,
    作MH⊥CD于H,
    ∵∠EDF=∠GDM,
    ∴∠EDG=∠FDM,
    ∵DE=DF,DG=DM,
    ∴△EDG≌△MDF(SAS),
    ∴MF=EG=2,
    ∵∠GDC=∠DMH,∠DCG=∠DHM,DG=DM,
    ∴△DGC≌△MDH(AAS),
    ∴CG=DH=2,MH=CD=4,
    ∴CM==2,
    ∵CF≥CM﹣MF,
    ∴CF的最小值为2﹣2,
    故答案为:2﹣2.
    9.(2022•广州)如图,在矩形ABCD中,BC=2AB,点P为边AD上的一个动点,线段BP绕点B顺时针旋转60°得到线段BP′,连接PP′,CP′.当点P′落在边BC上时,∠PP′C的度数为 ;当线段CP′的长度最小时,∠PP′C的度数为 .
    【答案】120°,75°
    【解答】解:如图,以AB为边向右作等边△ABE,连接EP′.
    ∵△BPP′是等边三角形,
    ∴∠ABE=∠PBP′=60°,BP=BP′,BA=BE,
    ∴∠ABP=∠EBP′,
    在△ABP和△EBP′中,

    ∴△ABP≌△EBP′(SAS),
    ∴∠BAP=∠BEP′=90°,
    ∴点P′在射线EP′上运动,
    如图1中,设EP′交BC于点O,
    当点P′落在BC上时,点P′与O重合,此时∠PP′C=180°﹣60°=120°,
    当CP′⊥EP′时,CP′的长最小,此时∠EBO=∠OCP′=30°,
    ∴EO=OB,OP′=OC,
    ∴EP′=EO+OP′=OB+OC=BC,
    ∵BC=2AB,
    ∴EP′=AB=EB,
    ∴∠EBP′=∠EP′B=45°,
    ∴∠BP′C=45°+90°=135°,
    ∴∠PP′C=∠BP′C﹣∠BP′P=135°﹣60°=75°.
    故答案为:120°,75°.
    10.(2022•无锡)△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD与直线AE交于点F.如图,若点D在△ABC内,∠DBC=20°,则∠BAF= °;现将△DCE绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是 .
    【答案】80,4﹣.
    【解答】解:∵△ACB,△DEC都是等边三角形,
    ∴AC=CB,DC=EC,∠ACB=∠DCE=60°,
    ∴∠BCD=∠ACE,
    在△BCD和△ACE中,

    ∴△BCD≌△ACE(SAS),
    ∴∠DBC=∠EAC=20°,
    ∵∠BAC=60°,
    ∴∠BAF=∠BAC+∠CAE=80°.
    如图1中,设BF交AC于点T.
    同法可证△BCD≌△ACE,
    ∴∠CBD=∠CAF,
    ∵∠BTC=∠ATF,
    ∴∠BCT=∠AFT=60°,
    ∴点F在△ABC的外接圆上运动,当∠ABF最小时,AF的值最小,此时CD⊥BD,
    ∴BD===4,
    ∴AE=BD=4,∠BDC=∠AEC=90°,
    ∵CD=CE,CF=CF,
    ∴Rt△CFD≌Rt△CFE(HL),
    ∴∠DCF=∠ECF=30°,
    ∴EF=CE•tan30°=,
    ∴AF的最小值=AE﹣EF=4﹣,
    故答案为:80,4﹣.
    四.折叠有关最值问题
    11.(2022•青岛)如图,已知△ABC,AB=AC,BC=16,AD⊥BC,∠ABC的平分线交AD于点E,且DE=4.将∠C沿GM折叠使点C与点E恰好重合.下列结论正确的有: .(填写序号)
    ①BD=8
    ②点E到AC的距离为3
    ③EM=
    ④EM∥AC
    【答案】①④
    【解答】解:在△ABC中,AB=AC,BC=16,AD⊥BC,
    ∴BD=DC=BC=8,故①正确;
    如图,过点E作EF⊥AB于点F,EH⊥AC于点H,
    ∵AD⊥BC,AB=AC,
    ∴AE平分∠BAC,
    ∴EH=EF,
    ∵BE是∠ABD的角平分线,
    ∵ED⊥BC,EF⊥AB,
    ∴EF=ED,
    ∴EH=ED=4,故②错误;
    由折叠性质可得:EM=MC,DM+MC=DM+EM=CD=8,
    设DM=x,则EM=8﹣x,
    Rt△EDM中,EM2=DM2+DE2,
    ∴(8﹣x)2=42+x2,
    解得:x=3,
    ∴EM=MC=5,故③错误;
    设AE=a,则AD=AE+ED=4+a,BD=8,
    ∴AB2=(4+a)2+82,
    ∵=,
    ∴,
    ∴,
    ∴AB=2a,
    ∴(4+a)2+82=(2a)2,
    解得:a=或a=﹣4(舍去),
    ∴tanC==,
    又∵tan∠EMD=,
    ∴∠C=∠EMD,
    ∴EM∥AC,故④正确,
    故答案为:①④.
    12.(2022•铜仁市)如图,在边长为2的正方形ABCD中,点E为AD的中点,将△CDE沿CE翻折得△CME,点M落在四边形ABCE内.点N为线段CE上的动点,过点N作NP∥EM交MC于点P,则MN+NP的最小值为 .
    【答案】
    【解答】解:作点P关于CE的对称点P′,
    由折叠的性质知CE是∠DCM的平分线,
    ∴点P′在CD上,
    过点M作MF⊥CD于F,交CE于点G,
    ∵MN+NP=MN+NP′≥MF,
    ∴MN+NP的最小值为MF的长,
    连接DG,DM,
    由折叠的性质知CE为线段DM的垂直平分线,
    ∵AD=CD=2,DE=1,
    ∴CE==,
    ∵CE×DO=CD×DE,
    ∴DO=,
    ∴EO=,
    ∵MF⊥CD,∠EDC=90°,
    ∴DE∥MF,
    ∴∠EDO=∠GMO,
    ∵CE为线段DM的垂直平分线,
    ∴DO=OM,∠DOE=∠MOG=90°,
    ∴△DOE≌△MOG,
    ∴DE=GM,
    ∴四边形DEMG为平行四边形,
    ∵∠MOG=90°,
    ∴四边形DEMG为菱形,
    ∴EG=2OE=,GM=DE=1,
    ∴CG=,
    ∵DE∥MF,即DE∥GF,
    ∴△CFG∽△CDE,
    ∴,即,
    ∴FG=,
    ∴MF=1+=,
    ∴MN+NP的最小值为;
    方法二:同理方法一得出MN+NP的最小值为MF的长,DO=,
    ∴OC==,DM=2DO=,
    ∵S△CDM=DM•OC=CD•MF,
    即×=2×MF,
    ∴MF=,
    ∴MN+NP的最小值为;
    故答案为:.
    13.(2022•辽宁)如图,正方形ABCD的边长为10,点G是边CD的中点,点E是边AD上一动点,连接BE,将△ABE沿BE翻折得到△FBE,连接GF,当GF最小时,AE的长是 .
    【答案】5﹣5
    【解答】解:∵将△ABE沿BE翻折得到△FBE,
    ∴BF=BA=10,
    ∴点F在以B为圆心,10为半径的圆上运动,
    ∴当点G、F、B三点共线时,GF最小,
    连接EG,设AE=x,
    由勾股定理得,BG=5,
    ∵S梯形ABGD=S△EDG+S△ABE+S△EBG,
    ∴(5+10)×10=++,
    解得x=5﹣5,
    ∴AE=5﹣5,
    故答案为:5﹣5.
    14.(2022•台州)如图,在菱形ABCD中,∠A=60°,AB=6.折叠该菱形,使点A落在边BC上的点M处,折痕分别与边AB,AD交于点E,F.当点M与点B重合时,EF的长为 ;当点M的位置变化时,DF长的最大值为 .
    【答案】3,6﹣3.
    【解答】解:如图1中,
    ∵四边形ABCD是菱形,
    ∴AD=AB=BC=CD,∠A=∠C=60°,
    ∴△ADB,△BDC都是等边三角形,
    当点M与B重合时,EF是等边△ADB的高,EF=AD•sin60°=6×=3.
    如图2中,连接AM交EF于点O,过点O作OK⊥AD于点K,交BC于点T,过点A作AG⊥CB交CB的延长线于点G,取AF的中点R,连接OR.
    ∵AD∥CG,OK⊥AD,
    ∴OK⊥CG,
    ∴∠G=∠AKT=∠GTK=90°,
    ∴四边形AGTK是矩形,
    ∴AG=TK=AB•sin60°=3,
    ∵OA=OM,∠AOK=∠MOT,∠AKO=∠MTO=90°,
    ∴△AOK≌△MOT(AAS),
    ∴OK=OT=,
    ∵OK⊥AD,
    ∴OR≥OK=,
    ∵∠AOF=90°,AR=RF,
    ∴AF=2OR≥3,
    ∴AF的最小值为3,
    ∴DF的最大值为6﹣3.
    解法二:如图,过点D作DT⊥CB于点T.
    ∵DF=AD﹣AF,
    ∴当AF最小时,DF的值最大,
    ∵AF=FM≥DT=3,
    ∴AF的最小值为3,
    ∴DF的最大值为6﹣3.
    故答案为:3,6﹣3.
    五.与圆有关最值计算
    15.(2022•泸州)如图,在Rt△ABC中,∠C=90°,AC=6,BC=2,半径为1的⊙O在Rt△ABC内平移(⊙O可以与该三角形的边相切),则点A到⊙O上的点的距离的最大值为 .
    【答案】2+1
    【解答】解:当⊙O与BC、BA都相切时,连接AO并延长交⊙O于点D,则AD为点A到⊙O上的点的距离的最大值,
    设⊙O与BC、BA的切点分别为E、F,连接OE、OF,
    则OE⊥BC,OF⊥AB,
    ∵AC=6,BC=2,
    ∴tan∠ABC==,AB==4,
    ∴∠ABC=60°,
    ∴∠OBF=30°,
    ∴BF==,
    ∴AF=AB﹣BF=3,
    ∴OA==2,
    ∴AD=2+1,
    故答案为:2+1.
    37.(2022•桂林)如图,某雕塑MN位于河段OA上,游客P在步道上由点O出发沿OB方向行走.已知∠AOB=30°,MN=2OM=40m,当观景视角∠MPN最大时,游客P行走的距离OP是 米.
    【答案】20
    【解答】解:如图,取MN的中点F,过点F作FE⊥OB于E,以直径MN作⊙F,
    ∵MN=2OM=40m,点F是MN的中点,
    ∴MF=FN=20m,OF=40m,
    ∵∠AOB=30°,EF⊥OB,
    ∴EF=20m,OE=EF=20m,
    ∴EF=MF,
    又∵EF⊥OB,
    ∴OB是⊙F的切线,切点为E,
    ∴当点P与点E重合时,观景视角∠MPN最大,
    此时OP=20m,
    故答案为:20.

    相关试卷

    中考数学二轮培优复习专题10 填空题压轴题几何图形综合计算专项训练(2份,原卷版+解析版):

    这是一份中考数学二轮培优复习专题10 填空题压轴题几何图形综合计算专项训练(2份,原卷版+解析版),文件包含中考数学二轮培优复习专题10填空题压轴题几何图形综合计算专项训练原卷版doc、中考数学二轮培优复习专题10填空题压轴题几何图形综合计算专项训练解析版doc等2份试卷配套教学资源,其中试卷共70页, 欢迎下载使用。

    中考数学二轮复习压轴题培优训练专题27以相似为载体的几何综合问题(2份,原卷版+解析版):

    这是一份中考数学二轮复习压轴题培优训练专题27以相似为载体的几何综合问题(2份,原卷版+解析版),文件包含中考数学二轮复习压轴题培优训练专题27以相似为载体的几何综合问题原卷版doc、中考数学二轮复习压轴题培优训练专题27以相似为载体的几何综合问题解析版doc等2份试卷配套教学资源,其中试卷共87页, 欢迎下载使用。

    中考数学压轴真题汇编(全国通用)专题09几何中最小值计算压轴真题训练(原卷版+解析):

    这是一份中考数学压轴真题汇编(全国通用)专题09几何中最小值计算压轴真题训练(原卷版+解析),共28页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map