开学活动
搜索
    上传资料 赚现金

    中考数学二轮复习二次函数重难点练习专题27 二次函数与图形图象变换问题(2份,原卷版+解析版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      中考数学二轮复习二次函数重难点练习专题27 二次函数与图形图象变换问题(原卷版).doc
    • 解析
      中考数学二轮复习二次函数重难点练习专题27 二次函数与图形图象变换问题(解析版).doc
    中考数学二轮复习二次函数重难点练习专题27 二次函数与图形图象变换问题(原卷版)第1页
    中考数学二轮复习二次函数重难点练习专题27 二次函数与图形图象变换问题(原卷版)第2页
    中考数学二轮复习二次函数重难点练习专题27 二次函数与图形图象变换问题(原卷版)第3页
    中考数学二轮复习二次函数重难点练习专题27 二次函数与图形图象变换问题(解析版)第1页
    中考数学二轮复习二次函数重难点练习专题27 二次函数与图形图象变换问题(解析版)第2页
    中考数学二轮复习二次函数重难点练习专题27 二次函数与图形图象变换问题(解析版)第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学二轮复习二次函数重难点练习专题27 二次函数与图形图象变换问题(2份,原卷版+解析版)

    展开

    这是一份中考数学二轮复习二次函数重难点练习专题27 二次函数与图形图象变换问题(2份,原卷版+解析版),文件包含中考数学二轮复习二次函数重难点练习专题27二次函数与图形图象变换问题原卷版doc、中考数学二轮复习二次函数重难点练习专题27二次函数与图形图象变换问题解析版doc等2份试卷配套教学资源,其中试卷共107页, 欢迎下载使用。
    直击中考
    类型一:平移
    1.(2022·江苏镇江·统考中考真题)一次函数的图像与轴交于点,二次函数的图像经过点、原点和一次函数图像上的点.
    (1)求这个二次函数的表达式;
    (2)如图1,一次函数与二次函数的图像交于点、(),过点作直线轴于点,过点作直线轴,过点作于点.
    ①_________,_________(分别用含的代数式表示);
    ②证明:;
    (3)如图2,二次函数的图像是由二次函数的图像平移后得到的,且与一次函数的图像交于点、(点在点的左侧),过点作直线轴,过点作直线轴,设平移后点、的对应点分别为、,过点作于点,过点作于点.
    ①与相等吗?请说明你的理由;
    ②若,求的值.
    2.(2022·山东枣庄·统考中考真题)如图①,已知抛物线L:y=x2+bx+c的图象经过点A(0,3),B(1,0),过点A作ACx轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.
    (1)求抛物线的关系式;
    (2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;
    (3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;
    (4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
    3.(2022·山东济宁·统考中考真题)已知抛物线与x轴有公共点.
    (1)当y随x的增大而增大时,求自变量x的取值范围;
    (2)将抛物线先向上平移4个单位长度,再向右平移n个单位长度得到抛物线(如图所示),抛物线与x轴交于点A,B(点A在点B的右侧),与y轴交于点C.当OC=OA时,求n的值;
    (3)D为抛物线的顶点,过点C作抛物线的对称轴l的垂线,垂足为G,交抛物线于点E,连接BE交l于点F.求证:四边形CDEF是正方形.
    4.(2022·广东广州·统考中考真题)已知直线:经过点(0,7)和点(1,6).
    (1)求直线的解析式;
    (2)若点P(,)在直线上,以P为顶点的抛物线G过点(0,-3),且开口向下
    ①求的取值范围;
    ②设抛物线G与直线的另一个交点为Q,当点Q向左平移1个单长度后得到的点Q' 也在G上时,求G在≤≤的图象的最高点的坐标.
    5.(2022·上海·统考中考真题)已知:经过点,.
    (1)求函数解析式;
    (2)平移抛物线使得新顶点为(m>0).
    ①倘若,且在的右侧,两抛物线都上升,求的取值范围;
    ②在原抛物线上,新抛物线与轴交于,时,求点坐标.
    6.(2022·湖北恩施·统考中考真题)在平面直角坐标系中,O为坐标原点,抛物线与y轴交于点.
    (1)直接写出抛物线的解析式.
    (2)如图,将抛物线向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.
    (3)直线BC与抛物线交于M、N两点(点N在点M的右侧),请探究在x轴上是否存在点T,使得以B、N、T三点为顶点的三角形与相似,若存在,请求出点T的坐标;若不存在,请说明理由.
    (4)若将抛物线进行适当的平移,当平移后的抛物线与直线BC最多只有一个公共点时,请直接写出拋物线平移的最短距离并求出此时抛物线的顶点坐标.
    7.(2022·辽宁沈阳·统考中考真题)如图,平面直角坐标系中,O是坐标原点,抛物线经过点和点与x轴另一个交点A.抛物线与y轴交于点C,作直线AD.
    (1)①求抛物线的函数表达式
    ②并直接写出直线AD的函数表达式.
    (2)点E是直线AD下方抛物线上一点,连接BE交AD于点F,连接BD,DE,的面积记为,的面积记为,当时,求点E的坐标;
    (3)点G为抛物线的顶点,将抛物线图象中x轴下方部分沿x轴向上翻折,与抛物线剩下部分组成新的曲线为,点C的对应点,点G的对应点,将曲线,沿y轴向下平移n个单位长度().曲线与直线BC的公共点中,选两个公共点作点P和点Q,若四边形是平行四边形,直接写出P的坐标.
    8.(2022·湖南岳阳·统考中考真题)如图1,在平面直角坐标系中,抛物线:经过点和点.
    (1)求抛物线的解析式;
    (2)如图2,作抛物线,使它与抛物线关于原点成中心对称,请直接写出抛物线的解析式;
    (3)如图3,将(2)中抛物线向上平移2个单位,得到抛物线,抛物线与抛物线相交于,两点(点在点的左侧).
    ①求点和点的坐标;
    ②若点,分别为抛物线和抛物线上,之间的动点(点,与点,不重合),试求四边形面积的最大值.
    9.(2022·四川宜宾·统考中考真题)如图,抛物线与x轴交于、两点,与y轴交于点,其顶点为点D,连结AC.
    (1)求这条抛物线所对应的二次函数的表达式及顶点D的坐标;
    (2)在抛物线的对称轴上取一点E,点F为抛物线上一动点,使得以点A、C、E、F为顶点、AC为边的四边形为平行四边形,求点F的坐标;
    (3)在(2)的条件下,将点D向下平移5个单位得到点M,点P为抛物线的对称轴上一动点,求的最小值.
    10.(2022·湖北宜昌·统考中考真题)已知抛物线与轴交于,两点,与轴交于点.直线由直线平移得到,与轴交于点.四边形的四个顶点的坐标分别为,,,.
    (1)填空:______,______;
    (2)若点在第二象限,直线与经过点的双曲线有且只有一个交点,求的最大值;
    (3)当直线与四边形、抛物线都有交点时,存在直线,对于同一条直线上的交点,直线与四边形的交点的纵坐标都不大于它与抛物线的交点的纵坐标.
    ①当时,直接写出的取值范围;
    ②求的取值范围.
    11.(2022·江苏连云港·统考中考真题)已知二次函数,其中.
    (1)当该函数的图像经过原点,求此时函数图像的顶点的坐标;
    (2)求证:二次函数的顶点在第三象限;
    (3)如图,在(1)的条件下,若平移该二次函数的图像,使其顶点在直线上运动,平移后所得函数的图像与轴的负半轴的交点为,求面积的最大值.
    12.(2022·重庆·统考中考真题)如图,在平面直角坐标系中,抛物线与直线交于点,.
    (1)求该抛物线的函数表达式;
    (2)点是直线下方拋物线上的一动点,过点作轴的平行线交于点,过点作轴的平行线交轴于点,求的最大值及此时点的坐标;
    (3)在(2)中取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点为点的对应点,平移后的抛物线与轴交于点,为平移后的抛物线的对称轴上一点.在平移后的抛物线上确定一点,使得以点,,,为顶点的四边形是平行四边形,写出所有符合条件的点的坐标,并写出求解点的坐标的其中一种情况的过程.
    类型二:翻折
    13.(2022·湖南湘西·统考中考真题)已知二次函数y=﹣x2+4x+5及一次函数y=﹣x+b,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线y=﹣x+b与新图象有4个交点时,b的取值范围是 _____.
    14.(2022·青海西宁·统考中考真题)如图,抛物线与x轴交于点,与y轴交于点B,点C在直线AB上,过点C作轴于点,将沿CD所在直线翻折,使点A恰好落在抛物线上的点E处.
    (1)求抛物线解析式;
    (2)连接BE,求的面积;
    (3)拋物线上是否存在一点P,使?若存在,求出P点坐标;若不存在,请说明理由.
    15.(2022·湖南衡阳·统考中考真题)如图,已知抛物线交轴于、两点,将该抛物线位于轴下方的部分沿轴翻折,其余部分不变,得到的新图象记为“图象”,图象交轴于点.
    (1)写出图象位于线段上方部分对应的函数关系式;
    (2)若直线与图象有三个交点,请结合图象,直接写出的值;
    (3)为轴正半轴上一动点,过点作轴交直线于点,交图象于点,是否存在这样的点,使与相似?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由.
    16.(2022·广西柳州·统考中考真题)已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(m,0)两点,与y轴交于点C(0,5).
    (1)求b,c,m的值;
    (2)如图1,点D是抛物线上位于对称轴右侧的一个动点,且点D在第一象限内,过点D作x轴的平行线交抛物线于点E,作y轴的平行线交x轴于点G,过点E作EF⊥x轴,垂足为点F,当四边形DEFG的周长最大时,求点D的坐标;
    (3)如图2,点M是抛物线的顶点,将△MBC沿BC翻折得到△NBC,NB与y轴交于点Q,在对称轴上找一点P,使得△PQB是以QB为直角边的直角三角形,求出所有符合条件的点P的坐标.
    17.(2022·湖南邵阳·统考中考真题)如图,已知直线y=2x+2与抛物线y=ax2+bx+c相交于A,B两点,点A在x轴上,点B在y轴上,点C(3,0)在抛物线上.
    (1)求该抛物线的表达式.
    (2)正方形OPDE的顶点O为直角坐标系原点,顶点P在线段OC上,顶点E在y轴正半轴上,若△AOB与△DPC全等,求点P的坐标.
    (3)在条件(2)下,点Q是线段CD上的动点(点Q不与点D重合),将△PQD沿PQ所在的直线翻折得到△PQD',连接CD',求线段CD'长度的最小值.
    类型三:旋转
    18.(2022·四川资阳·中考真题)已知二次函数图象的顶点坐标为,且与x轴交于点.
    (1)求二次函数的表达式;
    (2)如图,将二次函数图象绕x轴的正半轴上一点旋转,此时点A、B的对应点分别为点C、D.
    ①连结,当四边形为矩形时,求m的值;
    ②在①的条件下,若点M是直线上一点,原二次函数图象上是否存在一点Q,使得以点B、C、M、Q为顶点的四边形为平行四边形,若存在,求出点Q的坐标;若不存在,请说明理由.
    19.(2022·广西河池·统考中考真题)在平面直角坐标系中,抛物线L1:y=ax2+2x+b与x轴交于两点A,B(3,0),与y轴交于点C(0,3).
    (1)求抛物线L1的函数解析式,并直接写出顶点D的坐标;
    (2)如图,连接BD,若点E在线段BD上运动(不与B,D重合),过点E作EF⊥x轴于点F,设EF=m,问:当m为何值时,△BFE与△DEC的面积之和最小;
    (3)若将抛物线L1绕点B旋转180°得抛物线L2,其中C,D两点的对称点分别记作M,N.问:在抛物线L2的对称轴上是否存在点P,使得以B,M,P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
    20.(2022·辽宁抚顺·统考中考真题)如图,抛物线与x轴交于,B两点,与y轴交于点,点D为x轴上方抛物线上的动点,射线交直线于点E,将射线绕点O逆时针旋转得到射线,交直线于点F,连接.
    (1)求抛物线的解析式;
    (2)当点D在第二象限且时,求点D的坐标;
    (3)当为直角三角形时,请直接写出点D的坐标.
    21.(2022·广西梧州·统考中考真题)如图,在平面直角坐标系中,直线分别与x,y轴交于点A,B,抛物线恰好经过这两点.
    (1)求此抛物线的解析式;
    (2)若点C的坐标是,将绕着点C逆时针旋转90°得到,点A的对应点是点E.
    ①写出点E的坐标,并判断点E是否在此抛物线上;
    ②若点P是y轴上的任一点,求取最小值时,点P的坐标.
    22.(2021·山东滨州·统考中考真题)如下列图形所示,在平面直角坐标系中,一个三角板的直角顶点与原点O重合,在其绕原点O旋转的过程中,两直角边所在直线分别与抛物线相交于点A、B(点A在点B的左侧).
    (1)如图1,若点A、B的横坐标分别为-3、,求线段AB中点P的坐标;
    (2)如图2,若点B的横坐标为4,求线段AB中点P的坐标;
    (3)如图3,若线段AB中点P的坐标为,求y关于x的函数解析式;
    (4)若线段AB中点P的纵坐标为6,求线段AB的长.
    23.(2021·江苏盐城·统考中考真题)学习了图形的旋转之后,小明知道,将点绕着某定点顺时针旋转一定的角度,能得到一个新的点.经过进一步探究,小明发现,当上述点在某函数图像上运动时,点也随之运动,并且点的运动轨迹能形成一个新的图形.
    试根据下列各题中所给的定点的坐标和角度的大小来解决相关问题.
    【初步感知】
    如图1,设,,点是一次函数图像上的动点,已知该一次函数的图像经过点.
    (1)点旋转后,得到的点的坐标为________;
    (2)若点的运动轨迹经过点,求原一次函数的表达式.
    【深入感悟】
    (3)如图2,设,,点反比例函数的图像上的动点,过点作二、四象限角平分线的垂线,垂足为,求的面积.
    【灵活运用】
    (4)如图3,设A,,点是二次函数图像上的动点,已知点、,试探究的面积是否有最小值?若有,求出该最小值;若没有,请说明理由.
    24.(2021·湖北黄冈·统考中考真题)已知抛物线与x轴相交于,两点,与y轴交于点C,点是x轴上的动点.
    (1)求抛物线的解析式;
    (2)如图1,若,过点N作x轴的垂线交抛物线于点P,交直线于点G.过点P作于点D,当n为何值时,;
    (3)如图2,将直线绕点B顺时针旋转,使它恰好经过线段的中点,然后将它向上平移个单位长度,得到直线.
    ①______;
    ②当点N关于直线的对称点落在抛物线上时,求点N的坐标.

    相关试卷

    中考数学二轮复习二次函数重难点练习专题25 二次函数与最大角问题(2份,原卷版+解析版):

    这是一份中考数学二轮复习二次函数重难点练习专题25 二次函数与最大角问题(2份,原卷版+解析版),文件包含中考数学二轮复习二次函数重难点练习专题25二次函数与最大角问题原卷版doc、中考数学二轮复习二次函数重难点练习专题25二次函数与最大角问题解析版doc等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。

    中考数学二轮复习二次函数重难点练习专题18 二次函数与倍角、半角问题(2份,原卷版+解析版):

    这是一份中考数学二轮复习二次函数重难点练习专题18 二次函数与倍角、半角问题(2份,原卷版+解析版),文件包含中考数学二轮复习二次函数重难点练习专题18二次函数与倍角半角问题原卷版doc、中考数学二轮复习二次函数重难点练习专题18二次函数与倍角半角问题解析版doc等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。

    中考数学二轮复习二次函数重难点练习专题15 二次函数与矩形存在性问题(2份,原卷版+解析版):

    这是一份中考数学二轮复习二次函数重难点练习专题15 二次函数与矩形存在性问题(2份,原卷版+解析版),文件包含中考数学二轮复习二次函数重难点练习专题15二次函数与矩形存在性问题原卷版doc、中考数学二轮复习二次函数重难点练习专题15二次函数与矩形存在性问题解析版doc等2份试卷配套教学资源,其中试卷共79页, 欢迎下载使用。

    英语朗读宝
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map