![(上海专用)中考数学一轮复习考点分项练习专题06图形的变化,新定义(27题)(原卷版)第1页](http://img-preview.51jiaoxi.com/2/3/16678154/0-1738564645788/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![(上海专用)中考数学一轮复习考点分项练习专题06图形的变化,新定义(27题)(原卷版)第2页](http://img-preview.51jiaoxi.com/2/3/16678154/0-1738564645850/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![(上海专用)中考数学一轮复习考点分项练习专题06图形的变化,新定义(27题)(原卷版)第3页](http://img-preview.51jiaoxi.com/2/3/16678154/0-1738564645877/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![(上海专用)中考数学一轮复习考点分项练习专题06图形的变化,新定义(27题)(解析版)第1页](http://img-preview.51jiaoxi.com/2/3/16678154/1-1738564649411/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![(上海专用)中考数学一轮复习考点分项练习专题06图形的变化,新定义(27题)(解析版)第2页](http://img-preview.51jiaoxi.com/2/3/16678154/1-1738564649447/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![(上海专用)中考数学一轮复习考点分项练习专题06图形的变化,新定义(27题)(解析版)第3页](http://img-preview.51jiaoxi.com/2/3/16678154/1-1738564649485/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:(上海专用)中考数学一轮复习考点分项练习 (2份,原卷版+解析版)
(上海专用)中考数学一轮复习考点分项练习专题06图形的变化,新定义(2份,原卷版+解析版)
展开
这是一份(上海专用)中考数学一轮复习考点分项练习专题06图形的变化,新定义(2份,原卷版+解析版),文件包含上海专用中考数学一轮复习考点分项练习专题06图形的变化新定义27题原卷版doc、上海专用中考数学一轮复习考点分项练习专题06图形的变化新定义27题解析版doc等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。
1.(2022秋•徐汇区期末)阅读理解:我们知道,引进了无理数后,有理数集就扩展到实数集:同样,如果引进“虚数”实数集就扩展到“复数集”现在我们定义:“虚数单位”,其运算规则是:i1=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,则i2019=( )
A.1B.﹣1C.iD.﹣i
二.填空题(共26小题)
2.(2022秋•黄浦区校级期末)如图,图中提供了一种求ct15°的方法.作 Rt△ABC,使∠C=90°,∠ABC=30°,再延长CB到点D,使BD=BA,联结AD,即可得∠D=15°.如果设AC=t,则可得CD=(2+)t,则ct15°=ctD==2+.用以上方法,则ct22.5°= .
3.(2022秋•黄浦区校级期末)如图,已知在△ABC中,∠C=90°,BC=8,csB=,点P是斜边AB上一点,过点P作PM⊥AB交边AC于点M,过点P作AC的平行线,与过点M作AB的平行线交于点Q.如果点Q恰好在∠ABC的平分线上,那么AP的长为 .
4.(2022秋•嘉定区校级期末)点A、B分别在△DEF的边DE、EF上,且∠DEF=90°,,∠EBA=45°(如图),△ABE沿直线AB翻折,翻折后的点E落在△DEF内部的点C,直线DC与边EF相交于点H,如果FH=AD,那么ctD= .
5.(2022秋•徐汇区校级期末)在同一平面直角坐标系中,如果两个二次函数y1=a1(x+h1)2+k1与y2=a2(x+h2)2+k2的图象的形状相同,并且对称轴关于y轴对称,那么我们称这两个二次函数互为梦函数.如二次函数y=(x+1)2﹣1与y=(x﹣1)2+3互为梦函数,写出二次函数y=2(x+2)2+1的其中一个梦函数 .
6.(2022秋•徐汇区校级期末)在Rt△ABC中,∠C=90°,M为AB的中点,将Rt△ABC绕点M旋转,使点C与点B重合得到△DEB,设边BE交边CA于点N.若BC=2,AC=3,则AN= .
7.(2022秋•浦东新区校级期末)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,点D是AC的中点,点E在边AB上,将△ADE沿DE翻折,使得点A落在点A'处,当A'E⊥AB时,那么AE的长为 .
8.(2022秋•杨浦区校级期末)已知y是关于x的函数,若该函数的图象经过点P(t,﹣t),则称点P为函数图象上的“相反点”,例如:直线y=2x﹣3上存在“相反点”P(1,﹣1).若二次函数y=x2+2mx+m+2的图象上存在唯一“相反点”,则m= .
9.(2022秋•杨浦区校级期末)在Rt△ABC中,∠C=90°,AB=5,,点D在斜边AB上,把△ACD沿直线CD翻折,使得点A落在同一平面内的点A'处,当A'D平行Rt△ABC的直角边时,AD的长为 .
10.(2022秋•浦东新区期末)如图,点E、F分别在边长为1的正方形ABCD的边AB、AD上,BE=2AE、AF=2FD,正方形A'B'C'D'的四边分别经过正方形ABCD的四个顶点,已知A'D'∥EF,那么正方形A'B'C'D'的边长是 .
11.(2022秋•浦东新区期末)如图,正方形ABCD的边长为5,点E是边CD上的一点,将正方形ABCD沿直线AE翻折后,点D的对应点是点D',联结CD'交正方形ABCD的边AB于点F,如果AF=CE,那么AF的长是 .
12.(2022秋•闵行区期末)如图,在Rt△ABC中,∠ACB=90°,AB=9,ctA=2,点D在边AB上,点E在边AC上,将△ABC沿着折痕DE翻折后,点A恰好落在线段BC的延长线上的点P处,如果∠BPD=∠A,那么折痕DE的长为 .
13.(2022秋•闵行区期末)阅读:对于线段MN与点O(点O与MN不在同一直线上),如果同一平面内点P满足:射线OP与线段MN交于点Q,且=,那么称点P为点O关于线段MN的“准射点”.
问题:如图,矩形ABCD中,AB=4,AD=5,点E在边AD上,且AE=2,联结BE.设点F是点A关于线段BE的“准射点”,且点F在矩形ABCD的内部或边上,如果点C与点F之间距离为d,那么d的取值范围为 .
14.(2022秋•徐汇区期末)如图,在等边三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,若△ABC的面积为48,则△DEF的面积为 .
15.(2022秋•徐汇区期末)如图,在Rt△ABC中,∠A=90°,AB=AC=2,将线段BC绕点B逆时针旋转α°(0<α<180)得到线段BD,且AD∥BC,则AD= .
16.(2022秋•青浦区校级期末)如图,在Rt△ABC中,∠ACB=90°,AC=1,tan∠CAB=2,将△ABC绕点A旋转后,点B落在AC的延长线上的点D,点C落在点E,DE与直线BC相交于点F,那么CF= .
17.(2022秋•黄浦区期末)如图,在矩形ABCD中,过点D作对角线AC的垂线,垂足为E,过点E作BE的垂线,交边AD于点F,如果AB=3,BC=5,那么DF的长是 .
18.(2022秋•黄浦区期末)将一张直角三角形纸片沿一条直线剪开,将其分成一张三角形纸片与一张四边形纸片,如果所得四边形纸片ABCD如图5所示,其中∠A=∠C=90°,AB=7厘米,BC=9厘米,CD=2厘米,那么原来的直角三角形纸片的面积是 平方厘米.
19.(2022秋•徐汇区期末)在Rt△ABC中,∠B=90°,∠BAC=30°,BC=1,以AC为边在△ABC外作等边△ACD,设点E、F分别是△ABC和△ACD的重心,则两重心E与F之间的距离是 .
20.(2022秋•徐汇区期末)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,D是AC的中点,点E在边AB上,将△ADE沿DE翻折,使得点A落在点A′处,当A′E⊥AB时,则A′A= .
21.(2022秋•杨浦区期末)如图,已知在Rt△ABC中,∠C=90°,AC=BC=1,点D在边BC上,将△ABC沿直线AD翻折,使点C落在点C′处,联结AC′,直线AC′与边CB的延长线相交于点F.如果∠DAB=∠BAF,那么BF= .
22.(2022秋•青浦区校级期末)如图,已知在△ABC中,∠C=90°,AB=21,,正方形DEFG的顶点G、F分别在AC、BC上,点D、E在斜边AB上,那么正方形DEFG的边长为 .
23.(2022秋•青浦区校级期末)新定义:有一组对角互余的凸四边形称为对余四边形,如图,已知在对余四边形ABCD中,AB=10,BC=12,CD=5,tanB=,那么边AD的长为 .
24.(2022秋•金山区校级期末)如果梯形的一条对角线把梯形分成的两个三角形相似,那么我们称该梯形为“优美梯形”.如果一个直角梯形是“优美梯形”,它的上底等于2,下底等于4,那么它的周长为 .
25.(2022秋•金山区校级期末)如图,已知在△ABC中,∠C=90°,BC=8,csB=,点P是斜边AB上一点,过点P作PM⊥AB交边AC于点M,过点P作AC的平行线,与过点M作AB的平行线交于点Q.如果直线CQ⊥AB,那么AP的长为 .
26.(2022秋•静安区期末)如图,△ABC绕点C逆时针旋转90°后得△DEC,如果点B、D、E在一直线上,且∠BDC=60°,BE=3,那么A、D两点间的距离是 .
27.(2022秋•静安区期末)定义:把二次函数y=a(x+m)2+n与y=﹣a(x﹣m)2﹣n(a≠0,m、n是常数)称作互为“旋转函数”.如果二次函数y=x2+bx﹣2与y=﹣x2﹣cx+c(b、c是常数)互为“旋转函数”,写出点P(b,c)的坐标 .
相关试卷
这是一份(上海专用)中考数学一轮复习考点分项练习专题11 几何综合题 解答题(2份,原卷版+解析版),文件包含上海专用中考数学一轮复习考点分项练习专题11几何综合题解答题25题原卷版doc、上海专用中考数学一轮复习考点分项练习专题11几何综合题解答题25题解析版doc等2份试卷配套教学资源,其中试卷共64页, 欢迎下载使用。
这是一份(上海专用)中考数学一轮复习考点分项练习专题09 证明题 解答题(2份,原卷版+解析版),文件包含上海专用中考数学一轮复习考点分项练习专题09证明题解答题23题原卷版doc、上海专用中考数学一轮复习考点分项练习专题09证明题解答题23题解析版doc等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
这是一份(上海专用)中考数学一轮复习考点分项练习专题04向量的线性运算(2份,原卷版+解析版),文件包含上海专用中考数学一轮复习考点分项练习专题04向量的线性运算34题原卷版doc、上海专用中考数学一轮复习考点分项练习专题04向量的线性运算34题解析版doc等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)