搜索
    上传资料 赚现金
    英语朗读宝

    2024年山东省淄博市中考数学模拟试卷(解析版)

    2024年山东省淄博市中考数学模拟试卷(解析版)第1页
    2024年山东省淄博市中考数学模拟试卷(解析版)第2页
    2024年山东省淄博市中考数学模拟试卷(解析版)第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年山东省淄博市中考数学模拟试卷(解析版)

    展开

    这是一份2024年山东省淄博市中考数学模拟试卷(解析版),共23页。
    本试卷共8页,满分150分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交 回.
    注意事项:
    1.答题前,考生务必用0.5毫米黑色签字笔将区县、学校、姓名、考试号、座号填写在答题卡和试卷规定位置,并核对条形码.
    2.选择题每小题选出答案后,用2B铅笔涂黑答题卡对应题目的答案标号;如需改动,用橡皮擦干净后,再选涂其他答案标号.
    3.非选择题必须用0.5毫米黑色签字笔作答,字体工整、笔迹清晰,写在答题卡各题目指定区域内如需改动,先划掉原来答案,然后再写上新答案,严禁使用涂改液、胶带纸、修正带修改,不允许使用计算器.
    4.保证答题卡清洁、完整,严禁折叠,严禁在答题卡上做任何标记.
    5.评分以答题卡上的答案为依据,不按以上要求作答的答案无效.
    一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1. 若实数a的相反数是﹣1,则a+1等于( )
    A. 2B. ﹣2C. 0D.
    【答案】A
    【解析】
    【分析】根据相反数的定义即可求解.
    【详解】解:∵1的相反数是﹣1,
    ∴a=1,
    ∴a+1=2
    故选:A.
    【点睛】本题主要考查了相反数,熟记相反数的定义是解题的关键.
    2. 下列图案中,既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    【答案】D
    【解析】
    【分析】根据中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,进行判断即可.
    【详解】解:A.不是中心对称图形,也不是轴对称图形,故此选项不合题意;
    B.不是中心对称图形,是轴对称图形,故此选项不合题意;
    C.不是中心对称图形,是轴对称图形,故此选项不合题意;
    D.既是轴对称图形,又是中心对称图形,故此选项符合题意;
    故选:D.
    【点睛】本题考查的是中心对称图形与轴对称图形的概念,正确掌握相关定义是解题关键.
    3. 经过折叠可以围成正方体,且在正方体侧面上的字恰好环绕组成一个四字成语的图形是( )
    A. B. C. D.
    【答案】C
    【解析】
    【分析】根据正方体侧面上的字恰好环绕组成一个四字成语,即是正方体的表面展开图,相对的面之间一定相隔一个正方形,且有两组相对的面,根据这一特点作答.
    【详解】解∶由正方体的表面展开图,相对的面之间一定相隔一个正方形可知,
    A.“心”、“想”、“事”、“成”四个字没有相对的面,故不符合题意;
    B.“吉”、“祥”、“如”、“意”四个字没有相对的面,故不符合题意;
    C.“金”与“题”相对,“榜”、“名”是相对的面,故符合题意;
    D.“马”、“到”、“成”、“功”四个字没有相对的面,故不符合题意;
    故选∶C.
    【点睛】本题主要考查了正方体相对两个面上的文字,明确正方体的表面展开图,相对的面之间一定相隔一个正方形是解题的关键.
    4. 小红在“养成阅读习惯,快乐阅读,健康成长”读书大赛活动中,随机调查了本校初二年级20名同学,在近5个月内每人阅读课外书的数量,数据如下表所示:
    则阅读课外书数量的中位数和众数分别是( )
    A. 13,15B. 14,15C. 13,18D. 15,15
    【答案】D
    【解析】
    【分析】利用中位数,众数的定义即可解决问题.
    【详解】解:中位数为第10个和第11个的平均数,众数为15.
    故选:D.
    【点睛】本题考查了中位数和众数,解题的关键是掌握平均数、中位数和众数的概念.
    5. 某城市几条道路的位置关系如图所示,道路AB∥CD,道路AB与AE的夹角∠BAE=50°.城市规划部门想新修一条道路CE,要求CF=EF,则∠E的度数为( )
    A. 23°B. 25°C. 27°D. 30°
    【答案】B
    【解析】
    【分析】先根据平行线的性质,由得到∠BAE=∠DFE=50°,然后根据三角形外角性质计算∠E的度数.
    【详解】解:∵,∠BAE=50°,
    ∴∠BAE=∠DFE=50°,
    ∵CF=EF,
    ∴∠C=∠E,
    ∵∠DFE=∠C+∠E=50°,
    ∴∠E=25°.
    故选:B.
    【点睛】本题考查了平行线的性质,等腰三角形的性质,以及三角形的外角性质,熟练掌握平行线的性质是解题的关键.
    6. 下列分数中,和π最接近的是( )
    A. B. C. D.
    【答案】A
    【解析】
    【分析】把分数化小数,用分数的分子除以分母即得小数商,除不尽时通常保留三位小数,据此先分别把每个选项中的分数化成小数,进而比较得解
    【详解】A. ;
    B ;
    C. ;
    D. ;
    因为
    故和π最接近的是,
    故选择:A
    【点睛】本题主要考查有理数大小的比较,熟练掌握分数化为小数的方法是解题的关键
    7. 如图,在△ABC中,AB=AC,∠A=120°.分别以点A和C为圆心,以大于AC的长度为半径作弧,两弧相交于点P和点Q,作直线PQ分别交BC,AC于点D和点E.若CD=3,则BD的长为( )
    A. 4B. 5C. 6D. 7
    【答案】C
    【解析】
    【分析】连接AD,由作图知:DE是线段AC的垂直平分线,得到AD=CD=3,∠DAC=∠C=30°,求得∠BAD=90°,再利用含30度角的直角三角形的性质即可求解.
    【详解】解:连接AD,
    由作图知:DE是线段AC的垂直平分线,
    ∴AD=CD=3,
    ∴∠DAC=∠C,
    ∵AB=AC,∠A=120°,
    ∴∠B=∠C=30°,则∠DAC=∠C=30°,
    ∴∠BAD=120°-∠DAC=90°,
    ∴BD=2AD=6,
    故选:C.
    【点睛】本题考查了作图-基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了线段垂直平分线的性质,等腰三角形的性质,含30度角的直角三角形的性质.
    8. 计算的结果是( )
    A. ﹣7a6b2B. ﹣5a6b2C. a6b2D. 7a6b2
    【答案】C
    【解析】
    【分析】先根据积的乘方法则计算,再合并同类项.
    【详解】解:原式,
    故选:C.
    【点睛】本题主要考查了积的乘方,合并同类项,解题的关键是掌握相应的运算法则.
    9. 为扎实推进“五育”并举工作,加强劳动教育,某校投入2万元购进了一批劳动工具.开展课后服务后,学生的劳动实践需求明显增强,需再次采购一批相同的劳动工具,已知采购数量与第一次相同,但采购单价比第一次降低10元,总费用降低了15%.设第二次采购单价为x元,则下列方程中正确的是( )
    A.
    B.
    C.
    D.
    【答案】D
    【解析】
    【分析】设第二次采购单价为x元,则第一次采购单价为(x+10)元,根据单价=总价÷数量,结合总费用降低了15%,采购数量与第一次相同,即可得出关于x的分式方程.
    【详解】解:设第二次采购单价为x元,则第一次采购单价为(x+10)元,
    依题意得:,
    故选:D.
    【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.
    10. 如图,在边长为4的菱形ABCD中,E为AD边的中点,连接CE交对角线BD于点F.若∠DEF=∠DFE,则这个菱形的面积为( )
    A. 16B. 6C. 12D. 30
    【答案】B
    【解析】
    【分析】连接AC交BD于O,如图,根据菱形的性质得到,CB=CD=AD=4,AC⊥AB,BO=OD,OC=AO,再利用∠DEF=∠DFE得到DF=DE=2,证明∠BCF=∠BFC得到BF=BC=4,则BD=6,所以OB=OD=3,接着利用勾股定理计算出OC,从而得到AC=,然后根据菱形的面积公式计算它的面积.
    【详解】解:连接AC交BD于O,如图,
    ∵四边形ABCD为菱形,
    ∴,CB=CD=AD=4,AC⊥AB,BO=OD,OC=AO,
    ∵E为AD边中点,
    ∴DE=2,
    ∵∠DEF=∠DFE,
    ∴DF=DE=2,
    ∵,
    ∴∠DEF=∠BCF,
    ∵∠DFE=∠BFC,
    ∴∠BCF=∠BFC,
    ∴BF=BC=4,
    ∴BD=BF+DF=4+2=6,
    ∴OB=OD=3,
    在Rt△BOC中,,
    ∴AC=2OC=,
    ∴菱形ABCD的面积=AC•BD=.
    故选:B.
    【点睛】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形面积=ab(a、b是两条对角线的长度).
    11. 若二次函数的图象经过P(1,3),Q(m,n)两点,则代数式的最小值为( )
    A. 1B. 2C. 3D. 4
    【答案】A
    【解析】
    【分析】先求得a=1,推出,原式化简得,利用偶次方的非负性,即可求解.
    【详解】解:∵二次函数的图象经过P(1,3),
    ∴,
    ∴a=1,
    ∴二次函数的解析式为,
    ∵二次函数的图象经过Q(m,n),
    ∴即,


    ∵,
    ∴的最小值为1,
    故选:A.
    【点睛】本题考查了配方法的应用,待定系数法求二次函数的解析式,二次函数的性质,非负数的性质,利用待定系数法求得二次函数的解析式是解题的关键.
    12. 如图,在△ABC中,AB=AC,点D在AC边上,过△ABD的内心I作IE⊥BD于点E.若BD=10,CD=4,则BE的长为( )
    A. 6B. 7C. 8D. 9
    【答案】B
    【解析】
    【分析】过点作,根据切线长定理设,进而结合已知条件表示出,求得的长,进而即可求解.
    【详解】解:如图,过点作,
    ∵是的内心,
    ∴,
    设,
    ∵BD=10,
    ∴,
    ∴,,
    ∵,
    ∴,
    解得,
    ∴,
    故选B.
    【点睛】本题考查了三角形内心的性质,切线长定理,掌握切线长定理是解题的关键.
    二、填空题:本大题共5个小题,每小题4分,共20分.请直接填写最后结果.
    13. 要使式子有意义,则的取值范围是________.
    【答案】
    【解析】
    【分析】根据,二次根式有意义,则被开方数是非负数,即可.
    【详解】∵式子有意义


    故答案为:.
    【点睛】本题考查二次根式的知识,解题的关键是掌握二次根式有意义,则被开方数是非负数,.
    14. 分解因式:=____.
    【答案】
    【解析】
    【分析】先提取公因式后继续应用平方差公式分解即可.
    【详解】.
    故答案为:
    15. 如图,在平面直角坐标系中,平移△ABC至△A1B1C1的位置.若顶点A(﹣3,4)的对应点是A1(2,5),则点B(﹣4,2)的对应点B1的坐标是________.
    【答案】(1,3)
    【解析】
    【分析】根据点A和点的坐标可得出平移规律,从而进一步可得出结论.
    【详解】解:∵顶点A(﹣3,4)的对应点是A1(2,5),

    ∴平移至的规律为:将向右平移5个单位,再向上平移1个单位即可得到
    ∵B(﹣4,2)
    ∴的坐标是(-4+5,2+1),即(1,3)
    故答案为:(1,3)
    【点睛】本题主要考查了坐标与图形,正确找出平移规律是解答本题的关键.
    16. 计算的结果为________.
    【答案】﹣2
    【解析】
    【分析】先变形,再根据同分母分式的加减法进行化简即可.
    【详解】解:
    =
    =
    =﹣2,
    故答案为:﹣2.
    【点睛】本题考查分式的加减,灵活运用分式的加减运算法则是解答的关键.
    17. 如图,正方形ABCD的中心与坐标原点O重合,将顶点D(1,0)绕点A(0,1)逆时针旋转90°得点D1,再将D1绕点B逆时针旋转90°得点D2,再将D2绕点C逆时针旋转90°得点D3,再将D3绕点D逆时针旋转90°得点D4,再将D4绕点A逆时针旋转90°得点D5……依此类推,则点D2022的坐标是________.
    【答案】(-2023,2022)
    【解析】
    【分析】由题意观察发现:每四个点一个循环,,由,推出.
    【详解】解:将顶点绕点逆时针旋转得点,

    再将绕点逆时针旋转得点,再将绕点逆时针旋转得点,再将绕点逆时针旋转得点,再将绕点逆时针旋转得点
    ,,,,,,
    观察发现:每四个点一个循环,,


    故答案为:.
    【点睛】本题考查坐标与图形的变化旋转,等腰直角三角形性质,规律型问题,解题的关键是学会探究规律的方法,找到规律再利用规律求解.
    三、解答题:本大题共7个小题,共70分.解答要写出必要的文字说明,证明过程或演算步骤.
    18. 解方程组:
    【答案】
    【解析】
    【分析】整理方程组得,继而根据加减消元法解二元一次方程组即可求解.
    【详解】解:整理方程组得,
    得,
    y=1,
    把y=1代入①得,
    解得x=5,
    ∴方程组的解为.
    【点睛】本题考查了解二元一次方程组,正确的计算是解题的关键.
    19. 如图,△ABC是等腰三角形,点D,E分别在腰AC,AB上,且BE=CD,连接BD,CE.求证:BD=CE.
    【答案】证明见解析
    【解析】
    【分析】根据等腰三角形的性质得出,进而利用证明与全等,再利用全等三角形的性质解答即可.
    【详解】证明:是等腰三角形,

    在与中,



    【点睛】此题考查全等三角形的判定和性质,解题的关键是利用证明与全等.
    20. 如图,直线y=kx+b与双曲线y=相交于A(1,2),B两点,与x轴相交于点C(4,0).
    (1)分别求直线AC和双曲线对应的函数表达式;
    (2)连接OA,OB,求△AOB的面积;
    (3)直接写出当x>0时,关于x的不等式kx+b>的解集.
    【答案】(1)y=x+,y=;
    (2)△AOB的面积为;
    (3)1

    相关试卷

    2024年山东省淄博市中考数学模拟试卷(原卷版):

    这是一份2024年山东省淄博市中考数学模拟试卷(原卷版),共8页。

    2024年山东省淄博市中考数学模拟试卷(解析版):

    这是一份2024年山东省淄博市中考数学模拟试卷(解析版),共25页。

    2024年山东省淄博市中考数学模拟试卷(解析版):

    这是一份2024年山东省淄博市中考数学模拟试卷(解析版),共25页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map