江苏省苏南八校2023_2024学年高一数学上学期12月联考试题含解析
展开
这是一份江苏省苏南八校2023_2024学年高一数学上学期12月联考试题含解析,共24页。试卷主要包含了函数y=lg0等内容,欢迎下载使用。
A. (3,4)B. (2,3)C. (1,2)D. (0,1)
2.函数y=lg0.5(4x-3)的定义域为( )
A. [1,+∞)B. [34,1]C. (34,1]D. (0,34]
3.已知函数f(x)是定义在R上的奇函数,当xb>cB. b>c>aC. c>a>bD. b>a>c
6.函数y=xcsx+sinx在区间[-π,π]的图象大致为( )
A. B. C. D.
7.已知函数fx=lgax-2-6(a>0且a≠1)的图象经过定点A,且点A在角θ的终边上,则3sinθ-2csθ2-4=( )
A. -15B. 445C. 5D. 235
8.已知函数f(x)=x2+(4a-3)x+3a, x0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2-x恰好有两个不相等的实数解,则a的取值范围是( )
A. (0,23]B. [23,34]C. [13,23]∪{34}D. [13,23)∪{34}
二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
9.下列函数中,是偶函数且在上单调递增的是.( )
A. B. C. D.
10.已知sinα-csα=15,且α为锐角,则下列选项中正确的是( )
A. sinαcsα=1225B. sinα+csα=75C. α∈0,π4D. tanα=43
11.已知函数f(x)=sin(csx),则( )
A. fx为偶函数B. 2π是fx的一个周期
C. fx在-π2,π2上单调递增D. fx=π8在0,π内仅有1个解
12.下列命题正确的是( )
A. 命题:“∀x∈(1,+∞),都有x2>1”的否定为“∃x∈(-∞,1],使得x2≤1”;
B. 设定义在R上函数f(x)=lg3(x-1),(x⩾4)f(x+1),(x0的解集为{x|x2},则abc>0;
D. 已知a=lg36,b=lg510,c=2lg34,则a,b,c的大小关系为c>a>b.
三、填空题:本题共4小题,每小题5分,共20分.
13.已知若,求的最小值是__________.
14.已知sinθ+2csθ=0,则3sinπ-θcs32π-θ+csπ+θcs52π-θ= .
15.已知函数y=f(x-2)的图像关于x=2对称,且对y=f(x),x∈R,当x1、x2∈(-∞,0),且x1≠x2时,f(x2)-f(x1)x2-x10,函数hx=fx-λgx在区间3,5上存在零点,求λ的取值范围;
(2)若a>1,且对任意x1∈a,a+3,都有x2∈a,a+3,使得fx1≤gx2成立,求a的取值范围.
21.(12分)
已知函数fx=lgax2+1-mx在R上为奇函数,a>1,m>0.
(1)求实数m的值并指出函数fx的单调性(单调性不需要证明);
(2)设存在x∈R,使fcs2x+2t-1+f2sinx-t=0成立,请问是否存在a的值?使gt=a4t-2t+1最小值为-23,若存在,求出a的值.
22.(12分)
已知函数f(x)=lg9(9x+1)+bx(b∈R)为偶函数.
(1)求b的值;
(2)求f(x)的最小值;
(3)若f(t(2x-2-x))
相关试卷
这是一份广西河池市八校联考2023_2024学年高一数学上学期12月月考试题含解析,共18页。
这是一份江苏省无锡市江阴市四校2023_2024学年高一数学上学期期中联考试题含解析,共18页。试卷主要包含了单项选择题.,多项选择题,填空题.,解答题等内容,欢迎下载使用。
这是一份江苏省无锡市江阴市四校2023_2024学年高一数学上学期期中联考试题含解析,共18页。试卷主要包含了单项选择题.,多项选择题,填空题.,解答题等内容,欢迎下载使用。