所属成套资源:【备战2025年中考】一轮复习 初中数学 真题分项汇编
- 【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题19 矩形、菱形、正方形(原卷版+解析版) 试卷 0 次下载
- 【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题20 圆(原卷版+解析版) 试卷 0 次下载
- 【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题22 图形的相似(含位似)(原卷版+解析版) 试卷 0 次下载
- 【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题23 轴对称(折叠)、平移、旋转变换(原卷版+解析版) 试卷 0 次下载
- 【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题25 解直角三角形(含勾股定理)及其应用 试卷 0 次下载
【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题21 弧长和扇形面积(原卷版+解析版)
展开
这是一份【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题21 弧长和扇形面积(原卷版+解析版),文件包含备战2025年中考一轮复习初中数学真题分项汇编专题21弧长和扇形面积原卷版doc、备战2025年中考一轮复习初中数学真题分项汇编专题21弧长和扇形面积解析版doc等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
一、选择题
1. (2024安徽省)若扇形的半径为6,,则的长为( )
A. B. C. D.
【答案】C
【解析】
【分析】此题考查了弧长公式,根据弧长公式计算即可.
由题意可得,的长为,
故选:C.
2. (2024贵州省)如图,在扇形纸扇中,若,,则的长为( )
A. B. C. D.
【答案】C
【解析】本题考查了弧长,根据弧长公式∶求解即可.
∵,,
∴的长为,
故选∶C.
3. (2024河北省)扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为时,扇面面积为、该折扇张开的角度为时,扇面面积为,若,则与关系的图象大致是( )
A. B. C. D.
【答案】C
【解析】本题考查正比例函数的应用,扇形的面积,设该扇面所在圆的半径为,根据扇形的面积公式表示出,进一步得出,再代入即可得出结论.掌握扇形的面积公式是解题的关键.
【详解】设该扇面所在圆的半径为,
,
∴,
∵该折扇张开的角度为时,扇面面积为,
∴,
∴,
∴是的正比例函数,
∵,
∴它的图像是过原点的一条射线.
故选:C.
4. (2024河南省)如图,是边长为的等边三角形的外接圆,点D是的中点,连接,.以点D为圆心,的长为半径在内画弧,则阴影部分的面积为( )
A. B. C. D.
【答案】C
【解析】过D作于E,利用圆内接四边形的性质,等边三角形的性质求出,利用弧、弦的关系证明,利用三线合一性质求出,,在中,利用正弦定义求出,最后利用扇形面积公式求解即可.
【详解】过D作于E,
∵是边长为的等边三角形的外接圆,
∴,,,
∴,
∵点D是的中点,
∴,
∴,
∴,,
∴,
∴,
故选:C.
【点睛】本题考查了圆内接四边形的性质,等边三角形的性质,等腰三角形的性质,扇形面积公式,解直角三角形等知识,灵活应用以上知识是解题的关键.
5. (2024四川广安)如图,在等腰三角形中,,,以为直径作半圆,与,分别相交于点,,则的长度为( )
A. B. C. D.
【答案】C
【解析】本题考查了求弧长.根据等腰三角形的性质和三角形的内角和定理求得的度数,证明,再由,再由等腰三角形的性质和平行线的性质求得的度数,利用弧长公式即可求解.
【详解】连接,,
∵,
∴,
∵,
∴,
∴
∴,
在中,,
∴,
又,
∵
∴,
∴的长度为,
故选:C.
6. (2024云南省)某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为厘米,底面圆的半径为厘米,则该圆锥的侧面积为( )
A. 平方厘米B. 平方厘米
C. 平方厘米D. 平方厘米
【答案】C
【解析】本题考查了圆锥侧面积,先求出圆锥底面圆的周长,再根据圆锥的侧面积计算公式计算即可求解,掌握圆锥侧面积计算公式是解题的关键.
【详解】圆锥的底面圆周长为厘米,
∴圆锥的侧面积为平方厘米,
故选:.
7. (2024重庆市A)如图,在矩形中,分别以点和为圆心,长为半径画弧,两弧有且仅有一个公共点.若,则图中阴影部分的面积为( )
A. B.
C. D.
【答案】D
【解析】本题考查扇形面积的计算,勾股定理等知识.根据题意可得,由勾股定理得出,用矩形的面积减去2个扇形的面积即可得到结论.
【详解】解:连接,
根据题意可得,
∵矩形,∴,,
在中,,
∴图中阴影部分的面积.
故选:D.
8. (2024四川遂宁)工人师傅在检查排污管道时发现淤泥堆积.如图所示,排污管道的横截面是直径为米的圆,为预估淤泥量,测得淤泥横截面(图中阴影部分)宽为米,请计算出淤泥横截面的面积( )
A. B. C. D.
【答案】A
【解析】本题考查了垂径定理,勾股定理,等边三角形的判定和性质,求不规则图形的面积,过点作于,由垂径定理得,由勾股定理得,又根据圆的直径为米可得,得到为等边三角形,即得,再根据淤泥横截面的面积即可求解,掌握垂径定理及扇形面积计算公式是解题的关键.
【详解】过点作于,则,,
∵圆直径为米,
∴,
∴在中,,
∵,
∴为等边三角形,
∴,
∴淤泥横截面的面积,
故选:.
二、填空题
1. (2024四川成都市)如图,在扇形中,,,则的长为______.
【答案】
【解析】此题考查了弧长公式,把已知数据代入弧长公式计算即可.
由题意得的长为
,
故答案为:
2. (2024甘肃威武)甘肃临夏砖雕是一种历史悠久的古建筑装饰艺术,是第一批国家级非物质文化遗产.如图1是一块扇面形的临夏砖雕作品,它的部分设计图如图2,其中扇形和扇形有相同的圆心O,且圆心角,若,,则阴影部分的面积是______ .(结果用π表示)
【答案】
【解析】根据扇形面积公式计算即可.本题考查了扇形面积公式,熟练掌握扇形面积公式是解题的关键.
∵圆心角,,,
∴阴影部分的面积是
故答案为:.
3. (2024四川自贡)龚扇是自贡“小三绝”之一.为弘扬民族传统文化,某校手工兴趣小组将一个废弃的大纸杯侧面剪开直接当作扇面,制作了一个龚扇模型(如图).扇形外侧两竹条夹角为.长,扇面的边长为,则扇面面积为________(结果保留).
【答案】
【解析】根据扇形公式进行计算即可.本题考查了扇面面积计算,掌握扇面面积等于两个扇形面积相减是解题的关键.
【详解】扇面面积扇形的面积扇形的面积
,
故答案:.
4. (2024深圳)如图,在矩形中,,O为中点,,则扇形的面积为________.
【答案】
【解析】本题考查了扇形的面积公式,解直角三角形.利用解直角三角形求得,,得到,再利用扇形的面积公式即可求解.
【详解】∵,,
∴,
∵O为中点,
∴,
∵,
在中,,
∴,
同理,
∴,
∴扇形的面积为,
故答案为:.
5. (2024吉林省)某新建学校因场地限制,要合理规划体育场地,小明绘制铅球场地设计图如图所示,该场地由和扇形组成,分别与交于点A,D.,,,则阴影部分的面积为______(结果保留).
【答案】
【解析】本题考查了扇形面积公式,熟练掌握扇形面积公式是解题的关键.
利用阴影部分面积等于大扇形减去小扇形面积,结合扇形面积公式即可求解.
由题意得:,
故答案为:.
6. (2024江苏盐城)已知圆锥的底面圆半径为4,母线长为5,则圆锥的侧面积是______.
【答案】
【解析】结合题意,根据圆锥侧面积和底面圆半径、母线的关系式计算,即可得到答案.
∵圆锥的底面圆半径为,母线长为
∴圆锥的侧面积
故答案为:.
【点睛】本题考查了圆锥的知识,解题的关键是熟练掌握圆锥的性质,从而完成求解.
7. (2024黑龙江齐齐哈尔)若圆锥的底面半径是1cm,它的侧面展开图的圆心角是直角,则该圆锥的高为______cm.
【答案】
【解析】本题考查了圆锥的计算.设圆锥的母线长为R,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到,然后解方程即可得母线长,然后利用勾股定理求得圆锥的高即可.
【详解】设圆锥的母线长为R,
根据题意得,
解得:.
即圆锥的母线长为,
∴圆锥的高cm,
故答案是:.
8. (2024黑龙江绥化)用一个圆心角为,半径为的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为______.
【答案】
【解析】本题考查了弧长公式,根据圆锥的底面圆的周长等于侧面的弧长,代入数据计算,即可求解.
设这个圆锥的底面圆的半径为,由题意得,
解得:
故答案为:.
9. (2024山东烟台)如图,在边长为6的正六边形中,以点F为圆心,以的长为半径作,剪下图中阴影部分做一个圆锥的侧面,则这个圆锥的底面半径为________.
【答案】
【解析】本题考查正多边形的性质,求圆锥的底面半径,先求出正六边形的一个内角的度数,进而求出扇形的圆心角的度数,过点作,求出的长,再利用圆锥底面圆的周长等于扇形的弧长,进行求解即可.
【详解】∵正六边形,
∴,,
∴,,
∴,
过点作于点,则:,
设圆锥的底面圆的半径为,则:,
∴;
故答案为:.
三、解答题
1. (2024山东枣庄)如图,在四边形中,,,.以点为圆心,以为半径作交于点,以点为圆心,以为半径作所交于点,连接交于另一点,连接.
(1)求证:为所在圆的切线;
(2)求图中阴影部分面积.(结果保留)
【答案】(1)见解析 (2)
【解析】【分析】本题考查平行四边形的性质和判定,圆的性质,扇形面积,等边三角形的性质等知识点,证明四边形是平行四边形是解题关键.
(1)根据圆的性质,证明,即可证明四边形是平行四边形,再证明是等边三角形,再根据圆的切线判定定理即可证得结果.
(2)先求出平行四边形的高,根据扇形面积公式三角形面积公式,平行四边形面积公式求解即可.
【小问1详解】
解:连接如图,
根据题意可知:,
又∵,
∴,
∵,
∴,
∵,
∴四边形是平行四边形,
∴,
∵,
∴是等边三角形,
∴,
∴,
∴在以为直径圆上,
∴,
∴为所在圆的切线.
【小问2详解】
过作于点,
由图可得:,
在中,,,
∴,
∴,
由题可知:扇形和扇形全等,
∴,
等边三角形的面积为:,
∴
相关试卷
这是一份【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题训练32 最值问题(原卷版+解析版),文件包含备战2025年中考一轮复习初中数学真题分项汇编专题32最值问题原卷版doc、备战2025年中考一轮复习初中数学真题分项汇编专题32最值问题解析版doc等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。
这是一份【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题28 概率(原卷版+解析版),文件包含备战2025年中考一轮复习初中数学真题分项汇编专题28概率原卷版doc、备战2025年中考一轮复习初中数学真题分项汇编专题28概率解析版doc等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
这是一份【备战2025年中考】一轮复习 初中数学 真题分项汇编 专题27 统计(原卷版+解析版),文件包含备战2025年中考一轮复习初中数学真题分项汇编专题27统计原卷版doc、备战2025年中考一轮复习初中数学真题分项汇编专题27统计解析版doc等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。