黑龙江省哈尔滨市2024年中考数学模拟试题
展开
这是一份黑龙江省哈尔滨市2024年中考数学模拟试题,共15页。试卷主要包含了﹣9的相反数是,下列运算一定正确的是,方程=的解为等内容,欢迎下载使用。
1.﹣9的相反数是( )
A.﹣9B.﹣C.9D.
2.下列运算一定正确的是( )
A.2a+2a=2a2B.a2•a3=a6
C.(2a2)3=6a6D.(a+b)(a﹣b)=a2﹣b2
3.下列图形中既是轴对称图形又是中心对称图形的是( )
A.B.
C.D.
4.七个大小相同的正方体搭成的几何体如图所示,其左视图是( )
A.B.
C.D.
5.如图,PA、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=50°,则∠ACB的度数为( )
A.60°B.75°C.70°D.65°
6.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( )
A.y=2(x+2)2+3B.y=2(x﹣2)2+3
C.y=2(x﹣2)2﹣3D.y=2(x+2)2﹣3
7.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为( )
A.20%B.40%C.18%D.36%
8.方程=的解为( )
A.x=B.x=C.x=D.x=
9.点(﹣1,4)在反比例函数y=的图象上,则下列各点在此函数图象上的是( )
A.(4,﹣1)B.(﹣,1)C.(﹣4,﹣1)D.(,2)
10.如图,在▱ABCD中,点E在对角线BD上,EM∥AD,交AB于点M,EN∥AB,交AD于点N,则下列式子一定正确的是( )
A.=B.=C.=D.=
二.填空题(共10小题)
11.将数6260000用科学记数法表示为 .
12.在函数y=中,自变量x的取值范围是 .
13.把多项式a3﹣6a2b+9ab2分解因式的结果是 .
14.不等式组的解集是 .
15.二次函数y=﹣(x﹣6)2+8的最大值是 .
16.如图,将△ABC绕点C逆时针旋转得到△A′B′C,其中点A′与A是对应点,点B′与B是对应点,点B′落在边AC上,连接A′B,若∠ACB=45°,AC=3,BC=2,则A′B的长为 .
17.一个扇形的弧长是11πcm,半径是18cm,则此扇形的圆心角是 度.
18.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为 度.
19.同时掷两枚质地均匀的骰子,每枚骰子的六个面上分别刻有1到6的点数,则这两枚骰子向上的一面出现的点数相同的概率为 .
20.如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为 .
三.解答题(共7小题)
21.先化简再求值:(﹣)÷,其中x=4tan45°+2cs30°.
22.图1、2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.
(1)在图1中画出以AC为底边的等腰直角三角形ABC,点B在小正方形顶点上;
(2)在图2中画出以AC为腰的等腰三角形ACD,点D在小正方形的顶点上,且△ACD的面积为8.
23.建国七十周年到来之际,海庆中学决定举办以“祖国在我心中”为主题的读书活动.为了使活动更具有针对性,学校在全校范围内随机抽取部分学生进行问卷调查,要求学生在“教育、科技、国防、农业、工业”五类书籍中,选取自己最想读的一种(必选且只选一种),学校将收集到的调查结果适当整理后,绘制成如图所示的不完整的统计图.请根据图中所给的信息解答下列问题:
(1)在这次调查中,一共抽取了多少名学生?
(2)请通过计算补全条形统计图;
(3)如果海庆中学共有1500名学生,请你估计该校最想读科技类书籍的学生有多少名.
24.已知:在矩形ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F.
(1)如图1,求证:AE=CF;
(2)如图2,当∠ADB=30°时,连接AF、CE,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD面积的.
25.寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元;
(1)求每副围棋和每副中国象棋各多少元;
(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?
26.已知:MN为⊙O的直径,OE为⊙O的半径,AB、CH是⊙O的两条弦,AB⊥OE于点D,CH⊥MN于点K,连接HN、HE,HE与MN交于点P.
(1)如图1,若AB与CH交于点F,求证:∠HFB=2∠EHN;
(2)如图2,连接ME、OA,OA与ME交于点Q,若OA⊥ME,∠EON=4∠CHN,求证:MP=AB;
(3)如图3,在(2)的条件下,连接OC、BC、AH,OC与EH交于点G,AH与MN交于点R,连接RG,若HK:ME=2:3,BC=,求RG的长.
27.如图,在平面直角坐标系中,点O为坐标原点,直线y=x+4与x轴交于点A,与y轴交于点B,直线BC与x轴交于点C,且点C与点A关于y轴对称;
(1)求直线BC的解析式;
(2)点P为线段AB上一点,点Q为线段BC上一点,BQ=AP,连接PQ,设点P的横坐标为t,△PBQ的面积为S(S≠0),求S与t之间的函数关系式(不要求写出自变量t的取值范围);
(3)在(2)的条件下,点E在线段OA上,点R在线段BC的延长线上,且点R的纵坐标为﹣,连接PE、BE、AQ,AQ与BE交于点F,∠APE=∠CBE,连接PF,PF的延长线与y轴的负半轴交于点M,连接QM、MR,若tan∠QMR=,求直线PM的解析式.
答案:
1.C.2.D.3.B.4.B.5.D.6.B.7.A.8.C.9.A.10.D.
11.6.26×106.12.x≠.13.a(a﹣3b)2.14.x≥3.15.8.16..17.110.8.60°或10.19..20.2.
21.解:原式=[﹣]÷
=(﹣)•
=•
=,
当x=4tan45°+2cs30°=4×1+2×=4+时,
原式=
=
=.
22.解:
23.解:(1)根据题意得:18÷30%=60(名),
答:在这次调查中,一共抽取了60名学生;
(2)60﹣(18+9+12+6)=15(名),
则本次调查中,选取国防类书籍的学生有15名,
补全条形统计图,如图所示:
(3)根据题意得:1500×=225(名),
答:该校最想读科技类书籍的学生有225名.
24.解:(1)∵四边形ABCD为矩形∴AB∥CD且AB=CD∴∠ABE=∠CDF∵AE⊥BD∴∠AEB=90°∵CE⊥BD∴∠CFD=90°∴△ABE≌△CDF(AAS)∴AE=CF.
(2)△AFD,△ABE,△BEC,△FDC.
25.解:(1)设每副围棋x元,每副中国象棋y元,
根据题意得:,
∴,
答:每副围棋16元,每副中国象棋10元;
(2)设购买围棋z副,则购买象棋(40﹣z)副,
根据题意得:16z+10(40﹣z)≤550,
∴z≤25,
答:最多可以购买25副围棋;
26.解:(1)如图1,∵AB⊥OE于点D,CH⊥MN于点K
∴∠ODB=∠OKC=90°
∵∠ODB+∠DFK+∠OKC+∠EON=360°
∴∠DFK+∠EON=180°
∵∠DFK+∠HFB=180°
∴∠HFB=∠EON
∵∠EON=2∠EHN
∴∠HFB=2∠EHN
(2)如图2,连接OB,
∵OA⊥ME,
∴∠AOM=∠AOE
∵AB⊥OE
∴∠AOE=∠BOE
∴∠AOM+∠AOE=∠AOE+∠BOE,
即:∠MOE=∠AOB
∴ME=AB
∵∠EON=4∠CHN,∠EON=2∠EHN
∴∠EHN=2∠CHN
∴∠EHC=∠CHN
∵CH⊥MN
∴∠HPN=∠HNM
∵∠HPN=∠EPM,∠HNM=HEM
∴∠EPM=∠HEM
∴MP=ME
∴MP=AB
(3)如图3,连接BC,过点A作AF⊥BC于F,过点A作AL⊥MN于L,连接AM,AC,
由(2)知:∠EHC=∠CHN,∠AOM=∠AOE
∴∠EOC=∠CON
∵∠EOC+∠CON+∠AOM+∠AOE=180°
∴∠AOE+∠EOC=90°,∠AOM+∠CON=90°
∵OA⊥ME,CH⊥MN
∴∠OQM=∠OKC=90°,CK=HK,ME=2MQ,
∴∠AOM+∠OMQ=90°
∴∠CON=∠OMQ
∵OC=OA
∴△OCK≌△MOQ(AAS)
∴CK=OQ=HK
∵HK:ME=2:3,即:OQ:2MQ=2:3
∴OQ:MQ=4:3
∴设OQ=4k,MQ=3k,
则OM===5k,AB=ME=6k
在Rt△OAC中,AC===5k
∵四边形ABCH内接于⊙O,∠AHC=∠AOC=×90°=45°,
∴∠ABC=180°﹣∠AHC=180°﹣45°=135°,
∴∠ABF=180°﹣∠ABC=180°﹣135°=45°
∴AF=BF=AB•cs∠ABF=6k•cs45°=3k
在Rt△ACF中,AF2+CF2=AC2
即:,解得:k1=1,(不符合题意,舍去)
∴OQ=HK=4,MQ=OK=3,OM=ON=5
∴KN=KP=2,OP=ON﹣KN﹣KP=5﹣2﹣2=1,
在△HKR中,∠HKR=90°,∠RHK=45°,
∴=tan∠RHK=tan45°=1
∴RK=HK=4
∴OR=RN﹣ON=4+2﹣5=1
∵∠CON=∠OMQ
∴OC∥ME
∴∠PGO=∠HEM
∵∠EPM=∠HEM
∴∠PGO=∠EPM
∴OG=OP=OR=1
∴∠PGR=90°
在Rt△HPK中,PH===2
∵∠POG=∠PHN,∠OPG=∠HPN
∴△POG∽△PHN
∴,即,PG=
∴RG===.
27.解:(1)∵y=x+4,
∴A(﹣3,0)B(0,4),
∵点C与点A关于y轴对称,
∴C(3,0),
设直线BC的解析式为y=kx+b,
将B(0,4),C(3,0)代入,
,
解得k=,b=4,
∴直线BC的解析式;
(2)如图1,过点A作AD⊥BC于点点D,过点P作PN⊥BC于N,PG⊥OB于点G.
∵OA=OC=3,OB=4,
∴AC=6,AB=BC=5,
∴sin∠ACD=,
即,
∴AD=,
∵点P为直线y=x+4上,
∴设P(t,t+4),
∴PG=﹣t,cs∠BPG=cs∠BAO,
即,
∴,
∵sin∠ABC=,
∴PN==,
∵AP=BQ,
∴BQ=5+,
∴S=,
即S=;
(3)如图,延长BE至T使ET=EP,连接AT、PT、AM、PT交OA于点S.
∵∠APE=∠EBC,∠BAC=∠BCA,
∴180°﹣∠APE﹣∠BAC=180°﹣∠EBC﹣∠ACB,
∴∠PEA=∠BEC=∠AET,
∴PT⊥AE,PS=ST,
∴AP=AT,∠TAE=∠PAE=∠ACB,
AT∥BC,
∴∠TAE=∠FQB,
∵∠AFT=∠BFQ,AT=AP=BQ,
∴△ATF≌△QBF,
∴AF=QF,TF=BF,
∵∠PSA=∠BOA=90°,
∴PT∥BM,
∴∠TBM=∠PTB,
∵∠BFM=∠PFT,
∴△MBF≌△PTF,
∴MF=PF,BM=PT,
∴四边形AMPQ为平行四边形,
∴AP∥MQ,MQ=AP=BQ,
∴∠MQR=∠ABC,
过点R作RH⊥MQ于点H,
∵sin∠ABC=sin∠MQR=,
设QR=25a,HR=24a,则QH=7a,
∵tan∠QMR=,
∴MH=23a,BQ=MQ=23a+7a=30a,BR=BQ+QR=55a,
过点R作RK⊥x轴于点K.
∵点R的纵坐标为﹣,
∴RK=,
∵sin∠BCO=,
∴CR=,BR=,
∴,a=,
∴BQ=30a=3,
∴5+=3,t=,
∴P(),
∴,
∵BM=PT=2PS=,BO=4,
∴OM=,
∴M(0,),
设直线PM的解析式为y=mx+n,
∴,
解得,
∴直线PM的解析式为y=.
相关试卷
这是一份黑龙江省哈尔滨市2024年中考数学模拟试题,共16页。
这是一份黑龙江省哈尔滨市2024年中考数学模拟汇编试题(含解析),共27页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
这是一份2024年黑龙江省哈尔滨市中考数学模拟试卷(含解析版),共30页。