2024年河南省中考数学模拟试卷
展开
这是一份2024年河南省中考数学模拟试卷,共8页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。
1.(3分)﹣的绝对值是( )
A.﹣B.C.2D.﹣2
2.(3分)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为( )
A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣5
3.(3分)如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为( )
A.45°B.48°C.50°D.58°
4.(3分)下列计算正确的是( )
A.2a+3a=6aB.(﹣3a)2=6a2
C.(x﹣y)2=x2﹣y2D.3﹣=2
5.(3分)如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是( )
A.主视图相同B.左视图相同
C.俯视图相同D.三种视图都不相同
6.(3分)一元二次方程(x+1)(x﹣1)=2x+3的根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.只有一个实数根D.没有实数根
7.(3分)某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是( )
A.1.95元B.2.15元C.2.25元D.2.75元
8.(3分)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为( )
A.﹣2B.﹣4C.2D.4
9.(3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为( )
A.2B.4C.3D.
10.(3分)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为( )
A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)
二、填空题(每小题3分,共15分。)
11.(3分)计算:﹣2﹣1= .
12.(3分)不等式组的解集是 .
13.(3分)现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是 .
14.(3分)如图,在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥OA.若OA=2,则阴影部分的面积为 .
15.(3分)如图,在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=a.连接AE,将△ABE沿AE折叠,若点B的对应点B′落在矩形ABCD的边上,则a的值为 .
三、解答题(本大题共8个小题,满分75分)
16.(8分)先化简,再求值:(﹣1)÷,其中x=.
17.(9分)如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.
(1)求证:△ADF≌△BDG;
(2)填空:
①若AB=4,且点E是的中点,则DF的长为 ;
②取的中点H,当∠EAB的度数为 时,四边形OBEH为菱形.
18.(9分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:
a.七年级成绩频数分布直方图:
b.七年级成绩在70≤x<80这一组的是:
70 72 74 75 76 76 77 77 77 78 79
c.七、八年级成绩的平均数、中位数如下:
根据以上信息,回答下列问题:
(1)在这次测试中,七年级在80分以上(含80分)的有 人;
(2)表中m的值为 ;
(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;
(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.
19.(9分)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE在高55m的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进21m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度.
(精确到1m.参考数据:sin34°≈0.56,cs34°=0.83,tan34°≈0.67,≈1.73)
20.(9分)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.
(1)求A,B两种奖品的单价;
(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的.请设计出最省钱的购买方案,并说明理由.
21.(10分)模具厂计划生产面积为4,周长为m的矩形模具.对于m的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下:
(1)建立函数模型
设矩形相邻两边的长分别为x,y,由矩形的面积为4,得xy=4,即y=;由周长为m,得2(x+y)=m,即y=﹣x+.满足要求的(x,y)应是两个函数图象在第 象限内交点的坐标.
(2)画出函数图象
函数y=(x>0)的图象如图所示,而函数y=﹣x+的图象可由直线y=﹣x平移得到.请在同一直角坐标系中直接画出直线y=﹣x.
(3)平移直线y=﹣x,观察函数图象
①当直线平移到与函数y=(x>0)的图象有唯一交点(2,2)时,周长m的值为 ;
②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围.
(4)得出结论
若能生产出面积为4的矩形模具,则周长m的取值范围为 .
22.(10分)在△ABC中,CA=CB,∠ACB=α.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.
(1)观察猜想
如图1,当α=60°时,的值是 ,直线BD与直线CP相交所成的较小角的度数是 .
(2)类比探究
如图2,当α=90°时,请写出的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.
(3)解决问题
当α=90°时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时的值.
23.(11分)如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y=﹣x﹣2经过点A,C.
(1)求抛物线的解析式;
(2)点P是抛物线上一动点,过点P作x轴的垂线,交直线AC于点M,设点P的横坐标为m.
①当△PCM是直角三角形时,求点P的坐标;
②作点B关于点C的对称点B',则平面内存在直线l,使点M,B,B′到该直线的距离都相等.当点P在y轴右侧的抛物线上,且与点B不重合时,请直接写出直线l:y=kx+b的解析式.(k,b可用含m的式子表示)
2024年河南省中考数学试卷
参考答案
一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.B; 2.C; 3.B; 4.D; 5.C; 6.A; 7.C; 8.B; 9.A; 10.D;
二、填空题(每小题3分,共15分。)
11.1; 12.x≤﹣2; 13.; 14.+π; 15.或;
三、解答题(本大题共8个小题,满分75分)
16. ; 17.4﹣2;30°; 18.23;77.5; 19. ; 20. ; 21.一;8;m≥8; 22.1;60°; 23. ;
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2019/8/29 13:17:40;用户:wxx;邮箱:wxx0328@163.cm;学号:1179730年级
平均数
中位数
七
76.9
m
八
79.2
79.5
相关试卷
这是一份2024年河南省中考数学模拟试卷,共8页。
这是一份2024年河南省中考数学模拟试卷(含解析版),共31页。
这是一份2021年河南省中考数学模拟试卷(二),共7页。试卷主要包含了下列各数中,比﹣2小的数是,如图所示的组合几何体的左视图是,下列各式计算正确的是,不等式组的最小整数解是,《九章算术》中记载等内容,欢迎下载使用。