年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省镇江地区2023_2024学年高一数学上学期10月月考试题含解析

    江苏省镇江地区2023_2024学年高一数学上学期10月月考试题含解析第1页
    江苏省镇江地区2023_2024学年高一数学上学期10月月考试题含解析第2页
    江苏省镇江地区2023_2024学年高一数学上学期10月月考试题含解析第3页
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省镇江地区2023_2024学年高一数学上学期10月月考试题含解析

    展开

    这是一份江苏省镇江地区2023_2024学年高一数学上学期10月月考试题含解析,共16页。试卷主要包含了 甲、乙分别解关于不等式, 设,则“”是“”成立的, 若实数满足等内容,欢迎下载使用。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
    3.考试结束后,将本试卷和答题卡一并交回.
    一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.
    1. 命题:的否定是()
    A. B.
    C. D.
    【答案】D
    【解析】
    【分析】利用存在量词命题的否定求解即可.
    【详解】命题:是存在量词命题,其否定是全称量词命题,
    所以命题:的否定是:.
    故选:D
    2. 已知集合,,则()
    AB. C. D.
    【答案】B
    【解析】
    【分析】先解一元二次不等式把集合用列举法表示出来,然后根据交集的定义即可求解.
    【详解】因为,
    所以,
    又,
    所以.
    故选:B.
    3. 若,则函数的值域为()
    A. B.
    C. D.
    【答案】A
    【解析】
    【分析】分离常数后求其值域即可.
    【详解】,
    因为,所以,所以,
    所以,所以函数值域为.
    故选:A.
    4. 甲、乙分别解关于不等式.甲抄错了常数,得到解集为;乙抄错了常数,得到解集为.如果甲、乙两人解不等式的过程都是正确的,则原不等式解集应为()
    A. B. C. D.
    【答案】A
    【解析】
    【分析】根据甲乙解不等式的信息求出,再求解不等式即得.
    【详解】依题意,由甲求得的解集得,由乙求得的解集得,解得,
    于是不等式,即,解得,
    所以原不等式解集应为.
    故选:A
    5. 已知不等式的解集为空集,则实数的取值范围是()
    A. B. C. D.
    【答案】C
    【解析】
    【分析】首先讨论当时是否满足题意,其次当时,由题意可得,解不等式组即可.
    【详解】当时,不等式为即不等式无解,满足题意;
    当时,若不等式的解集为空集,
    即不等式恒成立,
    则当且仅当,
    解不等式组得;
    综上所述,实数的取值范围是.
    故选:C.
    6. 设,则“”是“”成立的()
    A. 充分而不必要条件B. 必要而不充分条件
    C. 充分必要条件D. 既不充分也不必要条件
    【答案】B
    【解析】
    【分析】解出不等式,根据必要不充分条件判定即可得到答案.
    【详解】,解得或,
    ,解得或,
    显然或或,
    则“”是“”的必要而不充分条件,
    故选:B.
    7. 若实数满足:,,则的取值范围为()
    A. B. C. D.
    【答案】B
    【解析】
    【分析】根据给定条件,利用不等式性质求解即得.
    【详解】由,得,由,得,而,
    因此,所以的取值范围为.
    故选:B
    8. 已知函数,若函数的值域是,则实数的取值范围是()
    A. B. C. D.
    【答案】D
    【解析】
    【分析】先求出当时,的取值范围为,所以若函数的值域是,则当时,,即恒成立。即可求出的取值范围.
    【详解】对称轴为,
    ∴在单调递增,在,单调递减.
    ∴当时,的取值范围为,
    若函数的值域是,
    则当时,,即恒成立,
    ∴即.
    故选:D.
    二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.
    9. 下列各组函数中,表示同一个函数的是()
    A.
    B.
    C.
    D.
    【答案】ACD
    【解析】
    【分析】利用同一函数的定义,逐项判断即可.
    【详解】对于A,函数的定义域均为R,且,A是;
    对于B,函数的定义域为,而的定义域为R,B不是;
    对于C,函数的定义域均为,而,C是;
    对于D,函数的定义域均为R,而当时,,当时,,
    因此,D是.
    故选:ACD
    10. 命题“”为真命题的一个充分条件是()
    A. B. C. D.
    【答案】ABD
    【解析】
    【分析】求出给定命题为真命题时k的范围,再利用充分条件的定义判断即得.
    【详解】因为,则当时,恒成立,于是;
    当时,,解得,于是,
    所以命题“”为真命题时,k的取值范围是,
    显然,,,而真包含,ABD是,C不是.
    故选:ABD
    11. 十六世纪中叶,英国数学家雷科德在《砥智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若,则下列命题正确的是()
    A. 若,则
    B. 若,则
    C. 若,则
    D. 若,则
    【答案】BD
    【解析】
    【分析】利用不等式的性质,验证各选项的结论是否成立.
    【详解】时,若,则有,A选项错误;
    若,有,则,
    得,B选项正确;
    若,有,若,得,所以,C选项错误;
    若,则有,由,有,D选项正确.
    故选:BD
    12. 已知二次函数的图象如图所示,则下列结论正确的有()
    A.
    B.
    C.
    D. (其中且)
    【答案】ABD
    【解析】
    【分析】根据给定的函数图象,结合二次函数的性质用表示,再逐项判断得解.
    【详解】观察图象知,二次函数图象对称轴为,过点,
    由对称性得该图象还过点,于是,即,显然,
    因此,,,,C错误,AB正确;
    当时,,而,
    即,D正确.
    故选:ABD
    三、填空题:本大题共4小题,每小题5分,共20分.请把答案填写在答题卡相应位置上.
    13. 函数的定义域为__________.
    【答案】
    【解析】
    【分析】利用函数有意义,列式求解即得.
    【详解】函数有意义,则有,解得且,
    所以函数的定义域为.
    故答案为:
    14. 命题“”为假命题,则实数的范围为__________.
    【答案】
    【解析】
    【分析】由题意可得,“”为真命题,进而求出的范围即可.
    【详解】命题“”为假命题,等价于命题“”为真命题,所以,所以,则,所以.
    故答案为:.
    15. 已知,集合,则图中阴影部分所表示的集合是__________.
    【答案】
    【解析】
    【分析】解出集合,根据集合交并补即可得到答案.
    【详解】,解得或,则或,

    则或,
    则图中阴影部分所表示的集合是.
    故答案为:.
    16. 关于的不等式的解集中有且仅有3个整数,则实数范围为__________.
    【答案】
    【解析】
    【分析】根据二次函数的对称性可得出不等式的解集中的整数,再求出实数的取值范围即可.
    【详解】因为的对称轴为,开口向上,
    所以若关于x的一元二次不等式的解集中有且仅有3个整数,
    则分别为,
    则,所以,解得,
    所以的取值范围是.
    故答案为:.
    四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤.
    17. 已知集合,集合.
    (1)当时,求;
    (2)若“”是“”的必要不充分条件,求实数的取值范围.
    【答案】(1);
    (2).
    【解析】
    【分析】(1)求得集合,,再求结果即可;
    (2)由集合是集合的真子集,列出关系式,求解即可.
    【小问1详解】
    当时,,
    则或,又,
    故;
    【小问2详解】
    由题可得:集合是集合的真子集;
    显然,集合不为空集,
    故:且,解得且,即,
    故实数的取值范围为.
    18. 已知函数.
    (1)若,求函数的值域;
    (2)当时,求的取值范围.
    【答案】(1);
    (2).
    【解析】
    【分析】(1)根据给定的分段函数,分段求出函数值集合即可.
    (2)分段解不等式即得.
    【小问1详解】
    当时,,
    当时,,则当时,,当时,,即,
    所以函数的值域为.
    【小问2详解】
    由,得或,解得或,
    所以的取值范围是.
    19. 已知集合,集合.
    (1)若集合仅有唯一的元素,求实数的值;
    (2)若,求实数的取值范围.
    【答案】(1)或;
    (2).
    【解析】
    【分析】(1)根据给定条件,分类讨论求解.
    (2)利用集合的包含关系求解即可.
    【小问1详解】
    集合仅有唯一的元素,
    当时,,,符合题意,
    当时,,解得,此时,符合题意,
    所以实数的值是或.
    【小问2详解】
    由,得,
    当时,,解得,此时,则;
    当时,,无解;当时,,无解;
    当时,,解得,
    所以实数的取值范围.
    20. 某企业生产甲、乙两种产品所得利润分别是(单位:万元)和(单位:万元),它们与投入资金(单位:万元)的关系有经验公式.今将4万元资金投入生产甲、乙两种产品,其中对甲种产品投资(单位:万元).
    (1)试建立总利润(单位:万元)关于的函数关系式;
    (2)如何安排投入资金使得该企业所获利润最大?并求出获利润的最大值.
    【答案】(1)
    (2)甲产品投资2万元,乙投资2万元,此时利润最大,最大利润为2万元.
    【解析】
    【分析】(1)通过设出甲投资以及乙投资的数目,设立函数表达式,根据函数式直接写出定义域;
    (2)对于(1)中的函数解析式,利用换元法转化成一个二次函数的形式,最后结合二次函数的最值求法得出函数的最大值,从而解决问题.
    【小问1详解】
    甲投资万元,则乙投资万元,
    则;
    【小问2详解】
    令,则,

    当时,,此时的最大值为万元.
    则甲产品投资万元,乙投资2万元,此时利润最大,最大利润为2万元.
    21. 已知函数,其中.
    (1)若不等式的解集为,求不等式的解集;
    (2)当时,求不等式的解集.
    【答案】(1)或
    (2)答案见解析
    【解析】
    【分析】(1)由题意可以先求出的值,然后直接解一元二次不等式即可.
    (2)当时,不等式变为了,首先讨论当时的情形,然后再分别讨论时的情形,在讨论时,还要继续对进行分层讨论,由此即可得解.
    【小问1详解】
    由题意若不等式的解集为,
    则当且仅当,
    即,解得,
    此时不等式变为了,
    即,解得或,
    所以不等式的解集为或.
    【小问2详解】
    当时,不等式变为了,
    当时,不等式变为了,
    解不等式得,此时不等式的解集为;
    当时,
    分以下两种情形来讨论:
    情形一:
    令,得,此时有,
    此时方程有两个不相等的实数根,
    而此时二次函数开口向上,
    又,
    所以当时,不等式的解集为.
    情形二:
    令,得,此时只需即可,
    此时方程有两个相等的实数根或者无解,
    而此时二次函数开口向上,
    即不等式恒成立,
    所以此时不等式无解,即此时不等式的解集为.
    当时,
    分以下两种情形来讨论:
    情形一:
    令,得,此时只需即可,
    此时方程有两个不相等的实数根,
    而此时二次函数开口向下,
    又,所以此时不等式的解集为.
    情形二:
    令,得,又,故产生矛盾,即此种情形不可能成立.
    综上所述:当时,不等式的解集为;
    当时,不等式的解集为;
    当时,不等式的解集为;
    当时,不等式的解集为.
    【点睛】关键点点睛:本题第一问的关键是求出参数的值,至于第二问的关键是在对时的讨论中,还需对继续进行分层讨论.
    22. 已知函数,其中.
    (1)若不等式对于一切实数均成立,求实数的取值范围;
    (2)当时,若函数的最大值为,求实数的值.
    【答案】(1)
    (2)或
    【解析】
    【分析】(1)将不等式化简为,再结合一元二次不等式在恒成立问题,可联系一元二次函数图象,即可解决.
    (2)讨论给定区间与对称轴的关系,找出在不同情况下的最大值,再与题干最大值为建立等式,解出符合题意的即可.
    【小问1详解】
    ∵不等式对于一切实数均成立,
    ∴即对于一切实数均成立,
    ∴即,
    ∴解得或,
    ∴的取值范围为.
    【小问2详解】
    对称轴为,
    ①当时,在单调递减,
    ∴,
    又∵当时,函数的最大值为,
    ∴解得或,
    ∴;
    ②当时,单调递增,在单调递减,
    ∴,
    显然,不符合题意;
    ③当时,在单调递增,
    ∴,
    又∵当时,函数的最大值为,
    ∴,解得或,
    ∴;
    综上所述,或.

    相关试卷

    江苏省南京市2023_2024学年高一数学上学期10月月考试题含解析:

    这是一份江苏省南京市2023_2024学年高一数学上学期10月月考试题含解析,共15页。试卷主要包含了本试卷包括单项选择题四部分等内容,欢迎下载使用。

    重庆市2023_2024学年高一数学上学期10月月考试题含解析:

    这是一份重庆市2023_2024学年高一数学上学期10月月考试题含解析,共14页。试卷主要包含了 已知命题,则为, 若,则的值是, 设a,,且,则, 设函数为一次函数,且,则等内容,欢迎下载使用。

    浙江省2023_2024学年高一数学上学期10月月考试题含解析:

    这是一份浙江省2023_2024学年高一数学上学期10月月考试题含解析,共12页。试卷主要包含了考试结束后,只需上交答题纸, 若集合的值域为, 设函数满足, 下列说法正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map