所属成套资源:北师大版数学九下期末复习训练专项(2份,原卷版+解析版)
北师大版数学九下期末复习训练专项44 定角定高(2份,原卷版+解析版)
展开
这是一份北师大版数学九下期末复习训练专项44 定角定高(2份,原卷版+解析版),文件包含北师大版数学九下期末复习训练专项44定角定高原卷版doc、北师大版数学九下期末复习训练专项44定角定高解析版doc等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
1.定角定高模型呈现:有一类问题满足这样的条件特征:如下图,直线BC外一点A,A到直线BC距离为定值(定高),∠BAC为定角。则AD有最小值。又因为,像探照灯一样所以也叫探照灯模型。
【典例1】辅助圆之定角定高求解探究
(1)如图①,已知线段AB,以AB为斜边,在图中画出一个直角三角形;
(2)如图②,在△ABC中,∠ACB=60°,CD为AB边上的高,若CD=4,试判断AB是否存在最小值,若存在,请求出AB最小值;若不存在,请说明理由;
(3)如图③,某园林单位要设计把四边形花园划分为几个区域种植不同花草,在四边形ABCD中,∠A=45°,∠B=∠D=90°,CB=CD=6,点E、F分别为AB、AD上的点,若保持CE⊥CF,那么四边形AECF的面积是否存在最大值,若存在,请求出面积的最大值,若不存在,请说明理由.
【变式1-1】如图,在△ABC中,∠BAC=60°,AD⊥BC于点D,且AD=4,则△ABC面积的最小值为 .
【变式1-2】如图,在△ABC中,∠BAC=90°,BC边上的高AD=6,则△ABC周长的最小值为 .
【变式1-3】如图,正方形ABCD的边长为6,点E,F分别是CD,BC边上的点,且∠EAF=45°,则△AEF面积的最小值为 .
【变式1-4】(2019•新城区校级一模)问题提出:
如图1:在△ABC中,BC=10且∠BAC=45°,点O为△ABC的外心,则△ABC的外接圆半径是 .
问题探究:
如图2,正方形ABCD中,E、F分别是边BC、CD两边上点且∠EAF=45°,请问线段BE、DF、EF有怎样的数量关系?并说明理由.
问题解决:
如图3,四边形ABCD中,AB=AD=4,∠B=45°,∠D=135°,点E、F分别是射线CB、CD上的动点,并且∠EAF=∠C=60°,试问△AEF的面积是否存在最小值?若存在,请求出最小值.若不存在,请说明理由.
1.(2020•雁塔区校级二模)如图,在四边形ABCD中,AB=AD=CD=4,AD∥BC,∠B=60°,点E、F分别为边BC、CD上的两个动点,且∠EAF=60°,则△AEF的面积的最小值是 .
2.(2020春•和平区期中)如图,四边形ABCD中,∠BAD=135°,∠B=60°,∠D=120°,AD=5,AB=6,E、F分别为边BC及射线CD上的动点,∠EAF=45°,△AEF面积的最小值 .
3.【问题提出】
(1)如图①,已知点A是直线l外一点,点B,C均在直线l上,AD⊥l于点D且AD=4,∠BAC=45°.求BC的最小值;
【问题探究】
(2)如图②,在四边形ABCD中,∠A=45°,∠B=∠D=90°,CB=CD=2,点E,F分别为AB,AD上的点,且CE⊥CF,求四边形AECF面积的最大值;
【问题解决】
(3)如图③,某园林对一块矩形花圃ABCD进行区域划分,点K为BC的中点,点M,N分别为AB,DC上的点,且∠MKN=120°,MK,KN将花圃分为三个区域.已知AB=7m,BC=12m,现计划在△BMK和△CNK中种植甲花,在其余区域种植乙花,试求种植乙花面积的最大值.
4.(2020•渭滨区二模)问题提出
(1)如图①,已知线段AB,请以AB为斜边,在图中画出一个直角三角形;
(2)如图②,已知点A是直线l外一点,点B、C均在直线l上,AD⊥l且AD=3,∠BAC=60°,求△ABC面积的最小值;
问题解决
(3)如图③,某园林单位要设计把四边形花园划分为几个区域种植不同花草,在四边形ABCD中,∠A=45°,∠B=∠D=90°,CB=CD=6m,点E、F分别为AB、AD上的点,若保持CE⊥CF,那么四边形AECF的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由.
相关试卷
这是一份九年级数学下册专题12圆中的重要模型之定角定高(探照灯)模型、米勒最大角模型(原卷版+解析),共66页。试卷主要包含了米勒最大张角模型, 定角定高模型等内容,欢迎下载使用。
这是一份备战中考数学《重难点解读•专项训练》专题05 定角定高(知识解读),共16页。试卷主要包含了复习方法,复习难点等内容,欢迎下载使用。
这是一份备战中考数学《重难点解读•专项训练》专题05 定角定高(专项训练),文件包含专题05定角定高专项训练原卷版docx、专题05定角定高专项训练解析版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。