年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    广西贵港市2024年中考数学模拟汇编试题(含解析)

    广西贵港市2024年中考数学模拟汇编试题(含解析)第1页
    广西贵港市2024年中考数学模拟汇编试题(含解析)第2页
    广西贵港市2024年中考数学模拟汇编试题(含解析)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广西贵港市2024年中考数学模拟汇编试题(含解析)

    展开

    这是一份广西贵港市2024年中考数学模拟汇编试题(含解析),共26页。试卷主要包含了解答题等内容,欢迎下载使用。
    1.(3.00分)﹣8的倒数是( )
    A.8B.﹣8C.D.
    2.(3.00分)一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )
    A.2.18×106B.2.18×105C.21.8×106D.21.8×105
    3.(3.00分)下列运算正确的是( )
    A.2a﹣a=1B.2a+b=2abC.(a4)3=a7D.(﹣a)2•(﹣a)3=﹣a5
    4.(3.00分)笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是( )
    A.B.C.D.
    5.(3.00分)若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是( )
    A.﹣5B.﹣3C.3D.1
    6.(3.00分)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是( )
    A.3B.1C.﹣1D.﹣3
    7.(3.00分)若关于x的不等式组无解,则a的取值范围是( )
    A.a≤﹣3B.a<﹣3C.a>3D.a≥3
    8.(3.00分)下列命题中真命题是( )
    A.=()2一定成立
    B.位似图形不可能全等
    C.正多边形都是轴对称图形
    D.圆锥的主视图一定是等边三角形
    9.(3.00分)如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是( )
    A.24°B.28°C.33°D.48°
    10.(3.00分)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=( )
    A.16B.18C.20D.24
    11.(3.00分)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是( )
    A.6B.3C.2D.4.5
    12.(3.00分)如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是( )
    A.1B.2C.3D.4

    二、填空题(本大题共6小题,每小题3分,共18分
    13.(3.00分)若分式的值不存在,则x的值为 .
    14.(3.00分)因式分解:ax2﹣a= .
    15.(3.00分)已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是 .
    16.(3.00分)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为 .
    17.(3.00分)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为 (结果保留π).
    18.(3.00分)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点An的坐标为( ).

    三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤)
    19.(10.00分)(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;
    (2)解分式方程:+1=.
    20.(5.00分)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,AB=a.
    21.(6.00分)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.
    (1)求k和n的值;
    (2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.
    22.(8.00分)为了增强学生的环保意识,某校组织了一次全校2000名学生都参加的“环保知识”考试,考题共10题.考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:
    (1)本次抽查的样本容量是 ;在扇形统计图中,m= ,n= ,“答对8题”所对应扇形的圆心角为 度;
    (2)将条形统计图补充完整;
    (3)请根据以上调查结果,估算出该校答对不少于8题的学生人数.
    23.(8.00分)某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.
    (1)这批学生的人数是多少?原计划租用45座客车多少辆?
    (2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?
    24.(8.00分)如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.
    (1)求证:BD是⊙O的切线;
    (2)若AB=10,cs∠BAC=,求BD的长及⊙O的半径.
    25.(11.00分)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).
    (1)求这个二次函数的表达式;
    (2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.
    ①求线段PM的最大值;
    ②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.
    26.(10.00分)已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.
    (1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;
    (2)请利用如图1所示的情形,求证:=;
    (3)若AO=2,且当MO=2PO时,请直接写出AB和PB的长.

    参考答案与试题解析
    一、选择题(本大题共12小题,每小题3分,共36分)每小题四个选项中只有一项是正确的.
    1.(3.00分)﹣8的倒数是( )
    A.8B.﹣8C.D.
    【分析】根据倒数的定义作答.
    【解答】解:﹣8的倒数是﹣.
    故选:D.

    2.(3.00分)一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )
    A.2.18×106B.2.18×105C.21.8×106D.21.8×105
    【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.
    【解答】解:将数据2180000用科学记数法表示为2.18×106.
    故选:A.

    3.(3.00分)下列运算正确的是( )
    A.2a﹣a=1B.2a+b=2abC.(a4)3=a7D.(﹣a)2•(﹣a)3=﹣a5
    【分析】根据合并同类项,幂的乘方与积的乘方,同底数幂的乘法的计算法则解答.
    【解答】解:A、2a﹣a=a,故本选项错误;
    B、2a与b不是同类项,不能合并,故本选项错误;
    C、(a4)3=a12,故本选项错误;
    D、(﹣a)2•(﹣a)3=﹣a5,故本选项正确.
    故选:D.

    4.(3.00分)笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是( )
    A.B.C.D.
    【分析】由标有1﹣10的号码的10支铅笔中,标号为3的倍数的有3、6、9这3种情况,利用概率公式计算可得.
    【解答】解:∵在标有1﹣10的号码的10支铅笔中,标号为3的倍数的有3、6、9这3种情况,
    ∴抽到编号是3的倍数的概率是,
    故选:C.

    5.(3.00分)若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是( )
    A.﹣5B.﹣3C.3D.1
    【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.
    【解答】解:∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,
    ∴1+m=3、1﹣n=2,
    解得:m=2、n=﹣1,
    所以m+n=2﹣1=1,
    故选:D.

    6.(3.00分)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是( )
    A.3B.1C.﹣1D.﹣3
    【分析】据根与系数的关系α+β=﹣1,αβ=﹣2,求出α+β和αβ的值,再把要求的式子进行整理,即可得出答案.
    【解答】解:∵α,β是方程x2+x﹣2=0的两个实数根,
    ∴α+β=﹣1,αβ=﹣2,
    ∴α+β﹣αβ=﹣1﹣2=﹣3,
    故选:D.

    7.(3.00分)若关于x的不等式组无解,则a的取值范围是( )
    A.a≤﹣3B.a<﹣3C.a>3D.a≥3
    【分析】利用不等式组取解集的方法,根据不等式组无解求出a的范围即可.
    【解答】解:∵不等式组无解,
    ∴a﹣4≥3a+2,
    解得:a≤﹣3,
    故选:A.

    8.(3.00分)下列命题中真命题是( )
    A.=()2一定成立
    B.位似图形不可能全等
    C.正多边形都是轴对称图形
    D.圆锥的主视图一定是等边三角形
    【分析】根据二次根式的性质、位似图形的定义、正多边形的性质及三视图的概念逐一判断即可得.
    【解答】解:A、=()2当a<0不成立,假命题;
    B、位似图形在位似比为1时全等,假命题;
    C、正多边形都是轴对称图形,真命题;
    D、圆锥的主视图一定是等腰三角形,假命题;
    故选:C.

    9.(3.00分)如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是( )
    A.24°B.28°C.33°D.48°
    【分析】首先利用圆周角定理可得∠COB的度数,再根据等边对等角可得∠OCB=∠OBC,进而可得答案.
    【解答】解:∵∠A=66°,
    ∴∠COB=132°,
    ∵CO=BO,
    ∴∠OCB=∠OBC=(180°﹣132°)=24°,
    故选:A.

    10.(3.00分)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=( )
    A.16B.18C.20D.24
    【分析】由EF∥BC,可证明△AEF∽△ABC,利用相似三角形的性质即可求出则S△ABC的值.
    【解答】解:∵EF∥BC,
    ∴△AEF∽△ABC,
    ∵AB=3AE,
    ∴AE:AB=1:3,
    ∴S△AEF:S△ABC=1:9,
    设S△AEF=x,
    ∵S四边形BCFE=16,
    ∴=,
    解得:x=2,
    ∴S△ABC=18,
    故选:B.

    11.(3.00分)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是( )
    A.6B.3C.2D.4.5
    【分析】作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,由PE+PM=PE′+PM=E′M知点P、M即为使PE+PM取得最小值的点,利用S菱形ABCD=AC•BD=AB•E′M求二级可得答案.
    【解答】解:如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,
    则点P、M即为使PE+PM取得最小值,
    其PE+PM=PE′+PM=E′M,
    ∵四边形ABCD是菱形,
    ∴点E′在CD上,
    ∵AC=6,BD=6,
    ∴AB==3,
    由S菱形ABCD=AC•BD=AB•E′M得×6×6=3•E′M,
    解得:E′M=2,
    即PE+PM的最小值是2,
    故选:C.

    12.(3.00分)如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是( )
    A.1B.2C.3D.4
    【分析】①根据抛物线的解析式得出抛物线与x轴的交点A、B坐标,由抛物线的对称性即可判定;
    ②求得⊙D的直径AB的长,得出其半径,由圆的面积公式即可判定,
    ③过点C作CE∥AB,交抛物线于E,如果CE=AD,则根据一组等边平行且相等的四边形是平行四边形即可判定;
    ④求得直线CM、直线CD的解析式通过它们的斜率进行判定.
    【解答】解:∵在y=(x+2)(x﹣8)中,当y=0时,x=﹣2或x=8,
    ∴点A(﹣2,0)、B(8,0),
    ∴抛物线的对称轴为x==3,故①正确;
    ∵⊙D的直径为8﹣(﹣2)=10,即半径为5,
    ∴⊙D的面积为25π,故②错误;
    在y=(x+2)(x﹣8)=x2﹣x﹣4中,当x=0时y=﹣4,
    ∴点C(0,﹣4),
    当y=﹣4时,x2﹣x﹣4=﹣4,
    解得:x1=0、x2=6,
    所以点E(6,﹣4),
    则CE=6,
    ∵AD=3﹣(﹣2)=5,
    ∴AD≠CE,
    ∴四边形ACED不是平行四边形,故③错误;
    ∵y=x2﹣x﹣4=(x﹣3)2﹣,
    ∴点M(3,﹣),
    设直线CM解析式为y=kx+b,
    将点C(0,﹣4)、M(3,﹣)代入,得:,
    解得:,
    所以直线CM解析式为y=﹣x﹣4;
    设直线CD解析式为y=mx+n,
    将点C(0,﹣4)、D(3,0)代入,得:,
    解得:,
    所以直线CD解析式为y=x﹣4,
    由﹣×=﹣1知CM⊥CD于点C,
    ∴直线CM与⊙D相切,故④正确;
    故选:B.

    二、填空题(本大题共6小题,每小题3分,共18分
    13.(3.00分)若分式的值不存在,则x的值为 ﹣1 .
    【分析】直接利用分是有意义的条件得出x的值,进而得出答案.
    【解答】解:若分式的值不存在,
    则x+1=0,
    解得:x=﹣1,
    故答案为:﹣1.

    14.(3.00分)因式分解:ax2﹣a= a(x+1)(x﹣1) .
    【分析】首先提公因式a,再利用平方差进行二次分解即可.
    【解答】解:原式=a(x2﹣1)=a(x+1)(x﹣1).
    故答案为:a(x+1)(x﹣1).

    15.(3.00分)已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是 5.5 .
    【分析】先判断出x,y中至少有一个是5,再用平均数求出x+y=11,即可得出结论.
    【解答】解:∵一组数据4,x,5,y,7,9的众数为5,
    ∴x,y中至少有一个是5,
    ∵一组数据4,x,5,y,7,9的平均数为6,
    ∴(4+x+5+y+7+9)=6,
    ∴x+y=11,
    ∴x,y中一个是5,另一个是6,
    ∴这组数为4,5,5,6,7,9,
    ∴这组数据的中位数是(5+6)=5.5,
    故答案为:5.5.

    16.(3.00分)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为 70° .
    【分析】设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,依据∠EFC=∠EFC',即可得到180°﹣α=40°+α,进而得出∠BEF的度数.
    【解答】解:∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,
    ∴∠C'FM=40°,
    设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,
    由折叠可得,∠EFC=∠EFC',
    ∴180°﹣α=40°+α,
    ∴α=70°,
    ∴∠BEF=70°,
    故答案为:70°.

    17.(3.00分)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为 4π (结果保留π).
    【分析】由将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,可得△ABC≌△A′BC′,由题给图可知:S阴影=S扇形ABA′+S△A′BC﹣S扇形CBC′﹣S△A′BC′可得出阴影部分面积.
    【解答】解:∵△ABC中,∠ACB=90°,AB=4,BC=2,
    ∴∠BAC=30°,∠ABC=60°,AC=2.
    ∵将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,
    ∴△ABC≌△A′BC′,
    ∴∠ABA′=120°=∠CBC′,
    ∴S阴影=S扇形ABA′+S△A′BC﹣S扇形CBC′﹣S△A′BC′
    =S扇形ABA′﹣S扇形CBC′
    =﹣
    =﹣
    =4π.
    故答案为4π.

    18.(3.00分)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点An的坐标为( 2n﹣1,0 ).
    【分析】依据直线l为y=x,点A1(1,0),A1B1⊥x轴,可得A2(2,0),同理可得,A3(4,0),A4(8,0),…,依据规律可得点An的坐标为(2n﹣1,0).
    【解答】解:∵直线l为y=x,点A1(1,0),A1B1⊥x轴,
    ∴当x=1时,y=,
    即B1(1,),
    ∴tan∠A1OB1=,
    ∴∠A1OB1=60°,∠A1B1O=30°,
    ∴OB1=2OA1=2,
    ∵以原点O为圆心,OB1长为半径画圆弧交x轴于点A2,
    ∴A2(2,0),
    同理可得,A3(4,0),A4(8,0),…,
    ∴点An的坐标为(2n﹣1,0),
    故答案为:2n﹣1,0.

    三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤)
    19.(10.00分)(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;
    (2)解分式方程:+1=.
    【分析】(1)先计算绝对值、零指数幂、负整数指数幂、代入三角函数值,再计算加减可得;
    (2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【解答】解:(1)原式=5﹣3﹣1﹣+=1;
    (2)方程两边都乘以(x+2)(x﹣2),得:4+(x+2)(x﹣2)=x+2,
    整理,得:x2﹣x﹣2=0,
    解得:x1=﹣1,x2=2,
    检验:当x=﹣1时,(x+2)(x﹣2)=﹣3≠0,
    当x=2时,(x+2)(x﹣2)=0,
    所以分式方程的解为x=﹣1.

    20.(5.00分)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,AB=a.
    【分析】根据作一个角等于已知角,线段截取以及垂线的尺规作法即可求出答案.
    【解答】解:如图所示,
    △ABC为所求作

    21.(6.00分)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.
    (1)求k和n的值;
    (2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.
    【分析】(1)利用一次函数图象上点的坐标特征可求出n值,进而可得出点B的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;
    (2)由k=6>0结合反比例函数的性质,即可求出:当2≤x≤6时,1≤y≤3.
    【解答】解:(1)当x=6时,n=﹣×6+4=1,
    ∴点B的坐标为(6,1).
    ∵反比例函数y=过点B(6,1),
    ∴k=6×1=6.
    (2)∵k=6>0,
    ∴当x>0时,y随x值增大而减小,
    ∴当2≤x≤6时,1≤y≤3.

    22.(8.00分)为了增强学生的环保意识,某校组织了一次全校2000名学生都参加的“环保知识”考试,考题共10题.考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:
    (1)本次抽查的样本容量是 50 ;在扇形统计图中,m= 16 ,n= 30 ,“答对8题”所对应扇形的圆心角为 86.4 度;
    (2)将条形统计图补充完整;
    (3)请根据以上调查结果,估算出该校答对不少于8题的学生人数.
    【分析】(1)先读图,根据图形中的信息逐个求出即可;
    (2)求出人数,再画出即可;
    (3)根据题意列出算式,再求出即可.
    【解答】解:(1)5÷10%=50(人),
    本次抽查的样本容量是50,
    =0.16=16%,1﹣10%﹣16%﹣24%﹣20%=30%,
    即m=16,n=30,
    360°×=86.4°,
    故答案为:50,16,30,86.4;
    (2);
    (3)2000×(24%+20%+30%)=1480(人),
    答:该校答对不少于8题的学生人数是1480人.

    23.(8.00分)某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.
    (1)这批学生的人数是多少?原计划租用45座客车多少辆?
    (2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?
    【分析】(1)设这批学生有x人,原计划租用45座客车y辆,根据“原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
    (2)找出每个学生都有座位时需要租两种客车各多少量,由总租金=每辆车的租金×租车辆数分别求出租两种客车各需多少费用,比较后即可得出结论.
    【解答】解:(1)设这批学生有x人,原计划租用45座客车y辆,
    根据题意得:,
    解得:.
    答:这批学生有240人,原计划租用45座客车5辆.
    (2)∵要使每位学生都有座位,
    ∴租45座客车需要5+1=6辆,租60座客车需要5﹣1=4辆.
    220×6=1320(元),300×4=1200(元),
    ∵1320>1200,
    ∴若租用同一种客车,租4辆60座客车划算.

    24.(8.00分)如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.
    (1)求证:BD是⊙O的切线;
    (2)若AB=10,cs∠BAC=,求BD的长及⊙O的半径.
    【分析】(1)如图1,作直径BE,半径OC,证明四边形ABDC是平行四边形,得∠A=∠D,由等腰三角形的性质得:∠CBD=∠D=∠A=∠OCE,可得∠EBD=90°,所以BD是⊙O的切线;
    (2)如图2,根据三角函数设EC=3x,EB=5x,则BC=4x根据AB=BC=10=4x,得x的值,求得⊙O的半径为,作高线CG,根据等腰三角形三线合一得BG=DG,根据三角函数可得结论.
    【解答】(1)证明:如图1,作直径BE,交⊙O于E,连接EC、OC,
    则∠BCE=90°,
    ∴∠OCE+∠OCB=90°,
    ∵AB∥CD,AB=CD,
    ∴四边形ABDC是平行四边形,
    ∴∠A=∠D,
    ∵OE=OC,
    ∴∠E=∠OCE,
    ∵BC=CD,
    ∴∠CBD=∠D,
    ∵∠A=∠E,
    ∴∠CBD=∠D=∠A=∠OCE,
    ∵OB=OC,
    ∴∠OBC=∠OCB,
    ∴∠OBC+∠CBD=90°,
    即∠EBD=90°,
    ∴BD是⊙O的切线;
    (2)如图2,∵cs∠BAC=cs∠E=,
    设EC=3x,EB=5x,则BC=4x,
    ∵AB=BC=10=4x,
    x=,
    ∴EB=5x=,
    ∴⊙O的半径为,
    过C作CG⊥BD于G,
    ∵BC=CD=10,
    ∴BG=DG,
    Rt△CGD中,cs∠D=cs∠BAC=,
    ∴,
    ∴DG=6,
    ∴BD=12.

    25.(11.00分)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).
    (1)求这个二次函数的表达式;
    (2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.
    ①求线段PM的最大值;
    ②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.
    【分析】(1)根据待定系数法,可得答案;
    (2)①根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;
    ②根据等腰三角形的定义,可得方程,根据解方程,可得答案.
    【解答】解:(1)将A,B,C代入函数解析式,得

    解得,
    这个二次函数的表达式y=x2﹣2x﹣3;
    (2)设BC的解析是为y=kx+b,
    将B,C的坐标代入函数解析式,得

    解得,
    BC的解析是为y=x﹣3,
    设M(n,n﹣3),P(n,n2﹣2n﹣3),
    PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+,
    当n=时,PM最大=;
    ②当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,
    解得n1=0(不符合题意,舍),n2=﹣(不符合题意,舍),n3=,
    n2﹣2n﹣3=2﹣2﹣3=﹣2﹣1,
    P(,﹣2﹣1).
    当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2,
    解得n1=0(不符合题意,舍),n2=﹣7(不符合题意,舍),n3=1,
    n2﹣2n﹣3=1﹣2﹣3=﹣4,
    P(1,﹣4);
    综上所述:P(1,﹣4)或(,﹣2﹣1).

    26.(10.00分)已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.
    (1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;
    (2)请利用如图1所示的情形,求证:=;
    (3)若AO=2,且当MO=2PO时,请直接写出AB和PB的长.
    【分析】(1)先证明四边形OCBM是平行四边形,由于∠BMO=90°,所以▱OCBM是矩形,最后直角三角形斜边上的中线的性质即可证明四边形OCBM是正方形;
    (2)连接AP、OB,由于∠ABP=∠AOP=90°,所以A、B、O、P四点共圆,从而利用圆周角定理可证明∠APB=∠OBM,所以△APB∽△OBM,利用相似三角形的性质即可求出答案.
    (3)由于点P的位置不确定,故需要分情况进行讨论,共两种情况,第一种情况是点P在O的左侧时,第二种情况是点P在O的右侧时,然后利用四点共圆、相似三角形的判定与性质,勾股定理即可求出答案.
    【解答】解:(1)∵2BM=AO,2CO=AO
    ∴BM=CO,
    ∵AO∥BM,
    ∴四边形OCBM是平行四边形,
    ∵∠BMO=90°,
    ∴▱OCBM是矩形,
    ∵∠ABP=90°,C是AO的中点,
    ∴OC=BC,
    ∴矩形OCBM是正方形.
    (2)连接AP、OB,
    ∵∠ABP=∠AOP=90°,
    ∴A、B、O、P四点共圆,
    由圆周角定理可知:∠APB=∠AOB,
    ∵AO∥BM,
    ∴∠AOB=∠OBM,
    ∴∠APB=∠OBM,
    ∴△APB∽△OBM,

    (3)当点P在O的左侧时,如图所示,
    过点B作BD⊥AO于点D,
    易证△PEO∽△BED,

    易证:四边形DBMO是矩形,
    ∴BD=MO,OD=BM
    ∴MO=2PO=BD,
    ∴,
    ∵AO=2BM=2,
    ∴BM=,
    ∴OE=,DE=,
    易证△ADB∽△ABE,
    ∴AB2=AD•AE,
    ∵AD=DO=DM=,
    ∴AE=AD+DE=
    ∴AB=,
    由勾股定理可知:BE=,
    易证:△PEO∽△PBM,
    ∴=,
    ∴PB=
    当点P在O的右侧时,如图所示,
    过点B作BD⊥OA于点D,
    ∵MO=2PO,
    ∴点P是OM的中点,
    设PM=x,BD=2x,
    ∵∠AOM=∠ABP=90°,
    ∴A、O、P、B四点共圆,
    ∴四边形AOPB是圆内接四边形,
    ∴∠BPM=∠A,
    ∴△ABD∽△PBM,
    ∴,
    又易证四边形ODBM是矩形,AO=2BM,
    ∴AD=BM=,
    ∴=,
    解得:x=,
    ∴BD=2x=2
    由勾股定理可知:AB=3,BM=3

    相关试卷

    2024年广西省贵港市中考数学模拟试卷(含解析版):

    这是一份2024年广西省贵港市中考数学模拟试卷(含解析版),共25页。

    2023年广西贵港市平南县中考数学模拟试卷(四)(含解析):

    这是一份2023年广西贵港市平南县中考数学模拟试卷(四)(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年广西贵港市港南区中考数学模拟试卷(含解析):

    这是一份2023年广西贵港市港南区中考数学模拟试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map