中考数学必刷真题考点分类专练(全国通用)专题32三角形压轴综合问题(原卷版+解析)
展开
这是一份中考数学必刷真题考点分类专练(全国通用)专题32三角形压轴综合问题(原卷版+解析),共82页。试卷主要包含了解答题等内容,欢迎下载使用。
一、解答题
1.(2022·青海·中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.
(1)问题发现:
如图1,若△ABC和△ADE是顶角相等的等腰三角形,BC,DE分别是底边.求证:BD=CE;
图1
(2)解决问题:如图2,若△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一条直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系并说明理由.
图2
2.(2022·辽宁大连·中考真题)综合与实践
问题情境:
数学活动课上,王老师出示了一个问题:如图1,在△ABC中,D是AB上一点,∠ADC=∠ACB.求证∠ACD=∠ABC.
独立思考:
(1)请解答王老师提出的问题.
实践探究:
(2)在原有问题条件不变的情况下,王老师增加下面的条件,并提出新问题,请你解答.“如图2,延长CA至点E,使CE=BD,BE与CD的延长线相交于点F,点G,H分别在BF,BC上,BG=CD,∠BGH=∠BCF.在图中找出与BH相等的线段,并证明.”
问题解决:
(3)数学活动小组河学时上述问题进行特殊化研究之后发现,当∠BAC=90°时,若给出△ABC中任意两边长,则图3中所有已经用字母标记的线段长均可求,该小组提出下面的问题,请你解答.“如图3,在(2)的条件下,若∠BAC=90°,AB=4,AC=2,求BH的长.”
3.(2022·山东青岛·中考真题)【图形定义】
有一条高线相等的两个三角形称为等高三角形.
例如:如图①.在△ABC和△A'B'C'中,AD,A'D'分别是BC和B'C'边上的高线,且AD=A'D',则△ABC和△A'B'C'是等高三角形.
【性质探究】
如图①,用S△ABC,S△A'B'C'分别表示△ABC和△A'B'C'的面积.
则S△ABC=12BC⋅AD,S△A'B'C'=12B'C'⋅A'D',
∵AD=A'D'
∴S△ABC:S△A'B'C=BC:B'C'.
【性质应用】
(1)如图②,D是△ABC的边BC上的一点.若BD=3,DC=4,则S△ABD:S△ADC=__________;
(2)如图③,在△ABC中,D,E分别是BC和AB边上的点.若BE:AB=1:2,CD:BC=1:3,S△ABC=1,则S△BEC=__________,S△CDE=_________;
(3)如图③,在△ABC中,D,E分别是BC和AB边上的点,若BE:AB=1:m,CD:BC=1:n,S△ABC=a,则S△CDE=__________.
4.(2022·山东烟台·中考真题)
(1)【问题呈现】如图1,△ABC和△ADE都是等边三角形,连接BD,CE.求证:BD=CE.
(2)【类比探究】如图2,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°.连接BD,CE.请直接写出BDCE的值.
(3)【拓展提升】如图3,△ABC和△ADE都是直角三角形,∠ABC=∠ADE=90°,且ABBC=ADDE=34.连接BD,CE.
①求BDCE的值;
②延长CE交BD于点F,交AB于点G.求sin∠BFC的值.
5.(2022·广西·中考真题)已知∠MON=α,点A,B分别在射线OM,ON上运动,AB=6.
(1)如图①,若α=90°,取AB中点D,点A,B运动时,点D也随之运动,点A,B,D的对应点分别为A',B',D',连接OD,OD'.判断OD与OD'有什么数量关系?证明你的结论:
(2)如图②,若α=60°,以AB为斜边在其右侧作等腰直角三角形ABC,求点O与点C的最大距离:
(3)如图③,若α=45°,当点A,B运动到什么位置时,△AOB的面积最大?请说明理由,并求出△AOB面积的最大值.
6.(2022·山东潍坊·中考真题)【情境再现】
甲、乙两个含45°角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处,将甲绕点O顺时针旋转一个锐角到图②位置.小莹用作图软件Gegebra按图②作出示意图,并连接AG,BH,如图③所示,AB交HO于E,AC交OG于F,通过证明△OBE≌△OAF,可得OE=OF.
请你证明:AG=BH.
【迁移应用】
延长GA分别交HO,HB所在直线于点P,D,如图④,猜想并证明DG与BH的位置关系.
【拓展延伸】
小亮将图②中的甲、乙换成含30°角的直角三角尺如图⑤,按图⑤作出示意图,并连接HB,AG,如图⑥所示,其他条件不变,请你猜想并证明AG与BH的数量关系.
7.(2022·辽宁锦州·中考真题)在△ABC中,AC=BC,点D在线段AB上,连接CD并延长至点E,使DE=CD,过点E作EF⊥AB,交直线AB于点F.
(1)如图1,若∠ACB=120°,请用等式表示AC与EF的数量关系:____________.
(2)如图2.若∠ACB=90°,完成以下问题:
①当点D,点F位于点A的异侧时,请用等式表示AC,AD,DF之间的数量关系,并说明理由;
②当点D,点F位于点A的同侧时,若DF=1,AD=3,请直接写出AC的长.
8.(2022·北京·中考真题)在△ABC中,∠ACB=90∘,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.
(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF,若AF⊥EF,求证:BD⊥AF;
(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2,若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.
9.(2022·福建·中考真题)已知△ABC≌△DEC,AB=AC,AB>BC.
(1)如图1,CB平分∠ACD,求证:四边形ABDC是菱形;
(2)如图2,将(1)中的△CDE绕点C逆时针旋转(旋转角小于∠BAC),BC,DE的延长线相交于点F,用等式表示∠ACE与∠EFC之间的数量关系,并证明;
(3)如图3,将(1)中的△CDE绕点C顺时针旋转(旋转角小于∠ABC),若∠BAD=∠BCD,求∠ADB的度数.
10.(2022·山东威海·中考真题)回顾:用数学的思维思考
(1)如图1,在△ABC中,AB=AC.
①BD,CE是△ABC的角平分线.求证:BD=CE.
②点D,E分别是边AC,AB的中点,连接BD,CE.求证:BD=CE.
(从①②两题中选择一题加以证明)
(2)猜想:用数学的眼光观察
经过做题反思,小明同学认为:在△ABC中,AB=AC,D为边AC上一动点(不与点A,C重合).对于点D在边AC上的任意位置,在另一边AB上总能找到一个与其对应的点E,使得BD=CE.进而提出问题:若点D,E分别运动到边AC,AB的延长线上,BD与CE还相等吗?请解决下面的问题:
如图2,在△ABC中,AB=AC,点D,E分别在边AC,AB的延长线上,请添加一个条件(不再添加新的字母),使得BD=CE,并证明.
(3)探究:用数学的语言表达
如图3,在△ABC中,AB=AC=2,∠A=36°,E为边AB上任意一点(不与点A,B重合),F为边AC延长线上一点.判断BF与CE能否相等.若能,求CF的取值范围;若不能,说明理由.
11.(2022·贵州铜仁·中考真题)如图,在四边形ABCD中,对角线AC与BD相交于点O,记△COD的面积为S1,△AOB的面积为S2.
(1)问题解决:如图①,若AB//CD,求证:S1S2=OC⋅ODOA⋅OB
(2)探索推广:如图②,若AB与CD不平行,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由.
(3)拓展应用:如图③,在OA上取一点E,使OE=OC,过点E作EF∥CD交OD于点F,点H为AB的中点,OH交EF于点G,且OG=2GH,若OEOA=56,求S1S2值.
12.(2022·湖北武汉·中考真题)已知CD是△ABC的角平分线,点E,F分别在边AC,BC上,AD=m,BD=n,△ADE与△BDF的面积之和为S.
(1)填空:当∠ACB=90°,DE⊥AC,DF⊥BC时,
①如图1,若∠B=45°,m=52,则n=_____________,S=_____________;
②如图2,若∠B=60°,m=43,则n=_____________,S=_____________;
(2)如图3,当∠ACB=∠EDF=90°时,探究S与m、n的数量关系,并说明理由:
(3)如图4,当∠ACB=60°,∠EDF=120°,m=6,n=4时,请直接写出S的大小.
13.(2022·黑龙江·中考真题)△ABC和△ADE都是等边三角形.
(1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有PA+PB=PC(或PA+PC=PB)成立;请证明.
(2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?并加以证明;
(3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?直接写出结论,不需要证明.
14.(2022·陕西·中考真题)问题提出
(1)如图1,AD是等边△ABC的中线,点P在AD的延长线上,且AP=AC,则∠APC的度数为__________.
问题探究
(2)如图2,在△ABC中,CA=CB=6,∠C=120°.过点A作AP∥BC,且AP=BC,过点P作直线l⊥BC,分别交AB、BC于点O、E,求四边形OECA的面积.
问题解决
(3)如图3,现有一块△ABC型板材,∠ACB为钝角,∠BAC=45°.工人师傅想用这块板材裁出一个△ABP型部件,并要求∠BAP=15°,AP=AC.工人师傅在这块板材上的作法如下:
①以点C为圆心,以CA长为半径画弧,交AB于点D,连接CD;
②作CD的垂直平分线l,与CD于点E;
③以点A为圆心,以AC长为半径画弧,交直线l于点P,连接AP、BP,得△ABP.
请问,若按上述作法,裁得的△ABP型部件是否符合要求?请证明你的结论.
15.(2022·湖南岳阳·中考真题)如图,△ABC和△DBE的顶点B重合,∠ABC=∠DBE=90°,∠BAC=∠BDE=30°,BC=3,BE=2.
(1)特例发现:如图1,当点D,E分别在AB,BC上时,可以得出结论:ADCE=______,直线AD与直线CE的位置关系是______;
(2)探究证明:如图2,将图1中的△DBE绕点B顺时针旋转,使点D恰好落在线段AC上,连接EC,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;
(3)拓展运用:如图3,将图1中的△DBE绕点B顺时针旋转α(19°
相关试卷
这是一份中考数学必刷真题考点分类专练(全国通用)专题34以圆为载体的几何压轴综合问题(原卷版+解析),共99页。试卷主要包含了解答题等内容,欢迎下载使用。
这是一份中考数学必刷真题考点分类专练(全国通用)专题31新定义与阅读理解创新型问题(原卷版+解析),共64页。试卷主要包含了﹣n=x﹣y﹣z+m﹣n,…,的“关联抛物线”为C2,【发现问题】,都是“黎点”等内容,欢迎下载使用。
这是一份中考数学必刷真题考点分类专练(全国通用)专题30规律探究问题(原卷版+解析),共25页。试卷主要包含了将全体正偶数排成一个三角形数阵等内容,欢迎下载使用。