所属成套资源:人教版数学七年级下册期末培优提升训练(2份,原卷版+解析版)
人教版数学七下培优提升训练专题6.6利用平方根立方根解方程大题提升训练(解析版)
展开
这是一份人教版数学七下培优提升训练专题6.6利用平方根立方根解方程大题提升训练(解析版),文件包含人教版数学七下培优提升训练专题66利用平方根立方根解方程大题提升训练原卷版doc、人教版数学七下培优提升训练专题66利用平方根立方根解方程大题提升训练解析版doc等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
注意事项:
本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.
一.解答题(共30小题)
1.(2022春•海淀区校级月考)求下列各式中的x
(1)(x+1)2=3;
(2)9(1+x)2=16;
(3)﹣8(1﹣x)3=27.
【分析】(1)利用平方根的定义求解即可;
(2)利用平方根的定义求解即可;
(3)利用立方根的定义求解即可;
【解答】解:(1)∵(x+1)2=3,
∴x+1=±,
∴x11,x21;
(2)∵9(1+x)2=16,
∴(1+x)2,
∴1+x=±,
即1+x=±,
∴x1,x2;
(3)∵﹣8(1﹣x)3=27,
∴(1﹣x)3,
∴1﹣x,
即1﹣x,
∴x.
2.(2021秋•句容市期末)求下列各式中x的值:
(1)(2x+1)2=25;
(2)64x3+1=﹣26.
【分析】(1)直接开平方,将方程转化为两个一元一次方程,再解方程即可求解;
(2)先移项,后同除以64,再直接开立方,将方程转化为一元一次方程,解方程即可求解;
【解答】解:(1)(2x+1)2=25
两边开平方得,2x+1=±5,
∴2x+1=5或2x+1=﹣5
∴x1=2,x2=﹣3;
(2)64x3+1=﹣26
移项得,64x3=﹣27
两边同除64得,
两边开立方得,.
3.求下列各式中x的值:
(1)(x﹣1)2﹣9=0;
(2)(2x﹣1)3﹣27=0.
【分析】(1)根据平方根的定义即可求解;
(2)根据立方根的定义即可求解.
【解答】解:(1)(x﹣1)2﹣9=0,
(x﹣1)2=9,
x﹣1=±3,
x﹣1=3或x﹣1=﹣3,
解得x=4或x=﹣2;
(2)(2x﹣1)3﹣27=0,
(2x﹣1)3=27,
2x﹣1=3,
2x=4,
x=2.
4.(2021秋•鼓楼区校级期末)求下列各式中的x:
(1)3x2﹣6=0;
(2)2x3=16.
【分析】(1)先求出x2的值,再根据平方根的定义解答;
(2)先求出x3的值,再根据立方根的定义解答.
【解答】解:(1)移项、方程两边都除以3得,x2=2,
∵(±)2=2,
∴x=±;
(2)方程两边都除以2得,x3=8,
∵23=8,
∴x=2.
5.(2022春•肥东县校级期中)求下列各式中x的值:
(1)4x2﹣25=0;
(2)(x+3)3=64.
【分析】(1)根据等式的性质以及平方根的定义得出答案;
(2)根据立方根的定义得出x+3=4,进而求出答案.
【解答】解:(1)4x2﹣25=0,
移项得,4x2=25,
两边都除以4得,x2,
由平方根的定义可得,x=±;
(2)(x+3)3=64,
由立方根的定义得x+3=4,
解得x=1.
6.(2021秋•鼓楼区校级期末)求下列各式中的x:
(1)(x+2)2=64;
(2)8x3+125=0.
【分析】(1)根据平方根的定义求解即可;
(2)把式子化为x3,再根据立方根的定义求解即可.
【解答】解:(1)(x+2)2=64,
x+2=±8,
x+2=8或x+2=﹣8,
解得x=6或x=﹣10;
(2)8x3+125=0,
8x3=﹣125,
x3,
x,
x.
7.(2021秋•江都区期末)求下列各式中x的值:
(1);
(2)(x﹣1)2﹣9=0.
【分析】(1)先把常数项移到等号的右边,再根据立方根的计算公式求出x的值即可;
(2)先把常数项移到等号的右边,再开方即可得出答案.
【解答】解:(1)∵,
∴x3,
∴x;
(2)∵(x﹣1)2﹣9=0,
∴(x﹣1)2=9,
∴x﹣1=±3,
∴x1=4,x2=﹣2.
8.(2021秋•惠山区期末)解下列方程:
(1)(x﹣1)2=9;
(2)2x3﹣16=0.
【分析】(1)根据平方根的定义解决此题.
(2)根据立方根的定义解决此题.
【解答】解:(1)∵(x﹣1)2=9,
∴x﹣1=±3.
∴x=4或x=﹣2.
(2)∵2x3﹣16=0,
∴2x3=16.
∴x3=8.
∴x=2.
9.(2021秋•鼓楼区期末)求下列各式中的x:
(1)2x2=10;
(2).
【分析】(1)根据平方根的定义求解即可,如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根;
(2)根据立方根的定义求解即可,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.记作:.
【解答】解:(1)2x2=10,
x2=5,
;
(2),
x+1,
.
10.(2021秋•商水县月考)解方程:
(1)25x2﹣169=0;
(2)8(x+1)3=﹣125.
【分析】(1)直接利用平方根的定义得出答案;
(2)直接利用立方根的定义得出答案.
【解答】解:(1)25x2﹣169=0,
则x2,
解得:x=±;
(2)8(x+1)3=﹣125,
则(x+1)3,
解得:x.
11.(2020秋•苏州期中)求下列各式中x的值.
(1)(x+1)2﹣6;
(2)(x﹣1)3=125.
【分析】(1)直接利用平方根的定义进而得出答案;
(2)直接利用立方根的定义得出答案.
【解答】解:(1)(x+1)2﹣6,
则(x+1)2,
故x+1=±,
解得:x或x;
(2)(x﹣1)3=125,
则x﹣1=5,
解得:x=6.
12.(2020秋•惠山区期中)求下列各式中x的值.
(1)9x2﹣121=0;
(2)24(x﹣1)3+3=0.
【分析】(1)直接利用平方根的定义得出答案;
(2)直接利用立方根的定义得出答案.
【解答】解:(1)由题意得:9x2=121,
∴x2,
∴x=±;
(2)24(x﹣1)3+3=0,
则(x﹣1)3,
故x﹣1,
解得:x.
13.(2020秋•武侯区校级月考)解方程:
(1)(x﹣1)3=﹣27.
(2)3(x﹣2)2=12.
【分析】(1)直接利用立方根的定义计算得出答案;
(2)直接利用平方根的定义得出答案.
【解答】解:(1)(x﹣1)3=﹣27,
则x﹣1=﹣3,
解得:x=﹣2;
(2)3(x﹣2)2=12
则(x﹣2)2=4,
故x﹣2=±2,
解得:x1=4,x2=0.
14.(2021秋•射阳县校级月考)计算下列各式中x的值:
(1)16x2﹣49=0;
(2)27(x+1)3+8=0.
【分析】(1)先移项,再系数化为1,根据平方根定义求得;
(2)先移项,再系数化为1,根据立方根定义求得.
【解答】解:(1)移项得,
16x2=49,
两边同时除以16得,
x2,
∵x是的平方根,
∴x,
∴x=±,
∴x或x;
(2)移项得,
27(x+1)3=﹣8,
两边同时除以27得,
(x+1)3,
∵x+1是的立方根,
∴x+1
即x+1,
∴x.
15.(2021春•玉山县月考)求下列各式中x的值
(1)2(x﹣3)2=50
(2)(x+1)3=﹣8
【分析】(1)根据平方根的定义可知x﹣3=±5,即可求得x;
(2)根据立方根的定义可知x+1=﹣2,即可求得x.
【解答】解:(1)∵2(x﹣3)2=50,
∴(x﹣3)2=25,
∴x﹣3=±5,
∴x=8或﹣2.
(2)∵(x+1)3=﹣8,
∴x+1=﹣2,
∴x=﹣3.
16.(2018春•綦江区校级期中)解方程:
(1);
(2).
【分析】(1)利用开平方的方法将一元二次方程转化为一元一次方程求解即可;
(2)利用开立方得方法转化为一元一次方程求解即可.
【解答】解:(1)
两边都乘以2得,(x﹣2)2=16,
两边开方得,x﹣2=4或x﹣2=﹣4,
解得x=6或x=﹣2,
即x1=6,x2=﹣2;
(2),
移项得,(x+1)3=1,
合并同类项得,(x+1)3,
两边开立方得,x+1,
移项合并同类项得,x.
17.(2020秋•沙坪坝区校级月考)解方程:
(1)4(x﹣1)2=25;
(2)2(x+2)3=1024.
【分析】(1)根据平方根解答方程即可;
(2)根据立方根解答方程即可.
【解答】解:(1)4(x﹣1)2=25,
,
x1=3.5,x2=﹣1.5;
(2)2(x+2)3=1024,
x+2=8,
x=6.
18.用直接开方法解方程.
(1)9x2=25
(2)2x2﹣98=0
(3)3(x﹣2)2=0
(4)3(x﹣1)2=2.7.
【分析】方程变形后利用平方根定义开方转化为两个一元一次方程来求解.
【解答】解:(1)开方得:3x=5或3x=﹣5,
解得:x1,x2;
(2)方程变形得:x2=49,
开方得:x1=7,x2=﹣7;
(3)方程开方得:x﹣2=0,
解得:x1=x2=2;
(4)方程变形得:(x﹣1)2=0.9,
开方得:x﹣1=±,
解得:x1=1,x2=1.
19.(2020秋•双流区校级月考)解方程:
(1)2(x﹣1)2﹣49=1;
(2)3(2x﹣1)3=﹣81.
【分析】(1)依据平方根的定义,即可得到x的值;
(2)依据立方根的定义,即可得到x的值.
【解答】解:(1)2(x﹣1)2﹣49=1,
2(x﹣1)2=50,
(x﹣1)2=25,
∴x﹣1=±5,
解得x=﹣4或6;
(2)3(2x﹣1)3=﹣81,
(2x﹣1)3=﹣27,
2x﹣1=﹣3,
解得x=﹣1.
20.(2022春•龙岩期中)求下列各式中x的值:
(1)(x+1)3﹣27=0;
(2)(2x﹣1)2﹣25=0.
【分析】(1)根据立方根的定义进行求解即可;
(2)根据平方根的定义进行求解,即可得出答案.
【解答】解:(1)(x+1)3﹣27=0,
(x+1)3=27,
x+1=3,
x=2;
(2)(2x﹣1)2﹣25=0,
(2x﹣1)2=25,
2x﹣1=±5,
x1=3,x2=﹣2.
21.(2021春•阳谷县月考)求下列各式中的x.
(1)3x2﹣15=0;
(2)2(x﹣1)3=﹣54;
【分析】(1)式子根据等式的性质变形可得x2=5,再根据平方根的定义求解即可;
(2)式子根据等式的性质变形可得(x﹣1)3=﹣27,再根据立方根的定义求解即可.
【解答】解:(1)3x2﹣15=0,
3x2=15,
x2=5,
x=±;
(2)2(x﹣1)3=﹣54,
(x﹣1)3=﹣27,
x﹣1=﹣3,
x=﹣2.
22.(2022春•光泽县月考)求下列各式中x的值.
(1)(x﹣3)2﹣4=21;
(2)27(x+1)3+8=0.
【分析】(1)由原式得(x﹣3)2=25,利用平方根的定义求解可得;
(2)由原式可得(x+1)3,根据立方根定义可得.
【解答】解:(1)移项得(x﹣3)2=25,
∴x﹣3=5或x﹣3=﹣5,
∴x=8或﹣2.
(2)移项整理得(x+1)3,
∴x+1,
∴x.
23.(2021秋•沭阳县校级期末)求下列各式中的x:
(1)4x2=25;
(2)(x+1)3﹣8=0.
【分析】(1)根据平方根的定义求解;
(2)根据立方根的定义求解.
【解答】解:(1)根据题意得x2,
∴x=±;
(2)根据题意得(x+1)3=8,
∴x+1=2,
∴x=1.
24.(2022春•合肥月考)求式中的x的值:
(1)3(x﹣1)2=12;
(2)(x+1)3=﹣9.
【分析】(1)先把二次项系数化为一,再开平方,最后求出x的值;
(2)先把三次项系数化为一,再开立方,最后求出x的值.
【解答】解:(1)3(x﹣1)2=12,
(x﹣1)2=4,
x﹣1=2或x﹣1=﹣2,
x1=3或x2=﹣1;
(2)(x+1)3=﹣9.
(x+1)3=﹣27,
x+1=﹣3,
x=﹣4.
25.(2022•南京模拟)解方程:
(1);
(2).
【分析】(1)先把方程化为,再利用直接开平方法求解即可;
(2)先把方程化为,再利用立方根的含义解方程即可.
【解答】解:(1)∵,
∴,
∴x是的平方根,
∴或,
解得:x=4或x=﹣5;
(2)∵,
∴,
∴,
解得:.
26.(2021秋•建邺区期末)求下列各式中x的值:
(1)(x﹣2)2=4;
(2)27x3=512.
【分析】(1)根据平方根的定义可得x﹣2=2或x﹣2=﹣2,进而求出答案;
(2)根据等式的性质以及立方根的定义进行计算即可.
【解答】解:(1)∵(x﹣2)2=4,
∴x﹣2=2或x﹣2=﹣2,
即x=4或x=0;
(2)∵27x3=512,
∴x3,
∴x,
即x.
27.(2022•南京模拟)求下列各式中的x的值.
(1);
(2)3(x﹣1)2=27;
(3);
(4)64x3﹣1=0.
【分析】(1)利用平方根解方程即可得;
(2)方程两边同除以3得(x﹣1)2=9,再利用平方根解方程即可得;
(3)利用立方根解方程即可得;
(4)先将方程变形为,再利用立方根解方程即可得.
【解答】解:(1)∵,
∴x是的平方根,
∴;
(2)3(x﹣1)2=27,
方程两边同除以3,得:
(x﹣1)2=9,
∴x﹣1是9的平方根,
∴x﹣1=3或x﹣1=﹣3,
∴x=4或x=﹣2;
(3)∵,
∴x﹣1是的立方根,
∴,
∴;
(4)∵64x3﹣1=0,
∴64x3=1,
∴,
∴.
28.(2021秋•淮安期末)求下列各式中的x.
(1)4x2﹣25=0;
(2)(x+3)2=16;
(3)(x﹣1)3=27.
【分析】(1)利用平方根的概念解方程;
(2)利用平方根的概念解方程;
(3)利用立方根的概念解方程.
【解答】解:(1)(1)4x2﹣25=0,
x2,
x,
x1,x2;
(2)(x+3)2=16,
x+3=±4,
x=﹣3±4,
x1=1,x2=﹣7;
(3)(x﹣1)3=27,
x﹣1=3,
x=4.
29.(2021秋•无锡期末)解方程:
(1)x2=3;
(2)8(x+1)3﹣27=0.
【分析】(1)先把未知数系数化为1,再根据平方根的计算公式求出x的值即可;
(2)先把常数项移到等号的右边,再开立方即可得出答案.
【解答】解:(1)∵x2=3,
∴x2=6,
∴x;
(2)∵8(x+1)3﹣27=0,
∴(x+1)3,
∴x+1,
∴x.
30.(2020秋•相城区月考)解方程:
(1)2(x﹣1)2﹣18=0;
(2)3x3+4=﹣20.
【分析】(1)依据平方根的定义,进行计算即可得出结论;
(2)依据立方根的定义,进行计算即可得出结论.
【解答】解:(1)2(x﹣1)2﹣18=0,
2(x﹣1)2=18,
(x﹣1)2=9,
x﹣1=±3,
解得x=4或﹣2;
(2)3x3+4=﹣20,
3x3=﹣24,
x3=﹣8,
解得x=﹣2.
相关试卷
这是一份人教版数学七下培优提升训练专题7.6坐标与新定义问题大题提升训练(2份,原卷版+解析版),文件包含人教版数学七下培优提升训练专题76坐标与新定义问题大题提升训练原卷版doc、人教版数学七下培优提升训练专题76坐标与新定义问题大题提升训练解析版doc等2份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。
这是一份人教版数学七下培优提升训练专题6.5实数的运算大题提升训练(2份,原卷版+解析版),文件包含人教版数学七下培优提升训练专题65实数的运算大题提升训练原卷版doc、人教版数学七下培优提升训练专题65实数的运算大题提升训练解析版doc等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
这是一份人教版数学七下培优提升训练专题6.4实数的分类大题提升训练(2份,原卷版+解析版),文件包含人教版数学七下培优提升训练专题64实数的分类大题提升训练原卷版doc、人教版数学七下培优提升训练专题64实数的分类大题提升训练解析版doc等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。