河北省香河县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解)
展开
这是一份河北省香河县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共23页。试卷主要包含了选择题等内容,欢迎下载使用。
1. 冬季奥林匹克运动会是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在北京和张家口举办.下列四个图分别是四届冬奥会图标中的一部分,其中是轴对称图形的为( )
A. B. C. D.
2. 下列运算,正确的是( )
A. a3+2a3=3a6B. (a2)4=a8
C. a2a3=a6D. (2ab)2=2a2b2
3. 突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,取得了抗击疫情的巨大成就.科学研究表明,某种新型冠状病毒颗粒的直径约为125纳米,1纳米米,若用科学记数法表示125纳米,则正确的结果是( )
A. 米B. 米C. 米D. 米
4. 如图,AB=AC,BD⊥AC于D,CE⊥AB于E.BD与CE交于O,连接AO,则图中共有全等的三角形的对数为( )
A. 1对B. 2对C. 3对D. 4对
5. 分式﹣可变形为( )
A. ﹣B. C. ﹣D.
6. 若(x+m)(x﹣8)中不含x的一次项,则m的值为( )
A. 8B. ﹣8C. 0D. 8或﹣8
7. 以下列各组线段的长为边能组成三角形的是( )
A. 2、5、8B. 2、5、3C. 6、6、2D. 9、6、2
8. 下列说法正确的是( )
A. 代数式是分式B. 分式中x,y都扩大3倍,分式的值不变
C. 分式的值为0,则x的值为D. 分式是最简分式
9. 如图,在ΔABC中,DE是AC的垂直平分线,AE=3cm,ΔABD的周长为13cm,则ΔABC的周长是( )
A. 13cmB. 16cmC. 19cmD. 22cm
10. 如果关于x的方程无解,则m的值是( )
A. 2B. 0C. 1D. –2
11. △ABC中,∠C=90°,∠A的平分线交BC于点D,如果AB=8,CD=3,则△ABD的面积为( )
A. 24B. 12C. 8D. 6
12. 计算a﹣2b2•(a2b﹣2)﹣2正确的结果是( )
A. B. C. a6b6D.
13. 下列关于分式的判断中错误的是( )
A. 当时,有意义B. 当时,的值为0
C. 无论x为何值,的值总为正数D. 无论x为何值,不可能得整数值
14. 如图,在△ABC中,∠B=90°,∠A=30°,AC=a,AB=m,以点C为圆心,CB长为半径画弧交AC于点D,再以点A为圆心,AD长为半径画弧交AB于点E,则BE的长为( )
A. m﹣B. a﹣mC. 2a﹣mD. m﹣a
15. 如图,在△ABC与△AEF中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=44°,AB交EF于点D,连接EB.下列结论:①∠FAC=44°;②AF=AC;③∠EFB=44°;④AD=AC,正确的个数为( )
A. 4个B. 3个C. 2个D. 1个
16. 如图,已知∠MON=30°,点…在射线ON上,点…在射线OM上:…均为等边三角形.若=1,则的边长为( )
A. 2021B. 4042C. D.
二.填空题(本大题共3题,总计 12分)
17. 方程=的解为x=___.
18. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是__________
19. 如图,△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线MD相交于D,DE⊥AB交AB的延长线于E,DF⊥AC于F,现有下列结论:①DE=DF;②DE+DF=AD;③DM平分∠EDF;④AB+AC=2AE;其中正确的有________.(填写序号)
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. 计算:
(1)
(2)
21. 先化简,再求值
(1),其中;
(2),其中.
22. 如图,已知△ABC的顶点分别为,,.
(1)作出△ABC关于x轴对称的图形,并写出点的坐标;
(2)若点是内部一点,则点P关于y轴对称的点的坐标是________.
(3)在x轴上找一点P,使得最小(画出图形,找到点P的位置).
23. 如图,已知△ABC.
(1)用直尺和圆规按下列要求作图:
①作△ABC的角平分线AD;
②作∠CBE=∠ADC,BE交CA的延长线于点E;
③作AF⊥BE,垂足为F.
(2)直接判断图中EF与BF的数量关系.
24. 实践与探索
如图1,边长为的大正方形有一个边长为的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示)
(1)上述操作能验证的等式是__________;(请选择正确的一个)
A. B. C.
(2)请应用这个公式完成下列各题:
①已知,,则__________.
②计算:
25. 刘峰和李明相约周末去科技馆看展览,根据他们的谈话内容,试求李明乘公交车、刘峰骑自行车每小时各行多少千米?
26. (1)问题发现:如图,△ABC和△DCE都是等边三角形,点B、D、E在同一条直线上,连接AE.
①的度数为________;
②线段AE、BD之间的数量关系为________;
(2)拓展探究:如图②,△ABC和△DCE都是等腰直角三角形,,点B、D、E在同一条直线上,CM为△DCE中DE边上的高,连接AE.试求的度数及判断线段CM、AE、BM之间的数量关系,并说明理由;
(3)解决问题:如图,△ABC和△DCE都是等腰三角形,,点B、D、E在同一条直线上,请直接写出的度数.
香河县2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:D
【解析】:解:A、不是轴对称图形,此项不符题意;
B、不是轴对称图形,此项不符题意;
C、不是轴对称图形,此项不符题意;
D、是轴对称图形,此项符合题意;
故选:D.
2.【答案】:B
【解析】:因为,所以A不符合题意;
因为,所以B符合题意;
因为,所以C不符合题意;
因为,所以D不符合题意.
故选:B.
3.【答案】:C
【解析】:125纳米=125×10-9米=1.25×10-7米.
故选:C.
4.【答案】:D
【解析】:由题意可得△CAE≌△BAD,△DCO≌△EBO,△ACO≌△ABO,△DAO≌△EAO共4对三角形全等.
故选:D.
5.【答案】:B
【解析】: 可变式为
∴B正确
故选B
6.【答案】:A
【解析】:原式,
由结果不含一次项,得到,即,
则的值为8,
故选:A.
7.【答案】:C
【解析】:解:根据三角形任意两边的和大于第三边,可知:
A、2+5<8,不能够组成三角形,故不符合题意;
B、2+3=5,不能组成三角形,故不符合题意;
C、2+6>7,能组成三角形,故符合题意;
D、2+6<9,不能组成三角形,故不符合题意;
故选:C.
8.【答案】:D
【解析】:A. 代数式不是分式,故该选项不正确,不符合题意;
B. 分式中x,y都扩大3倍,分式的值扩大3倍,故该选项不正确,不符合题意;
C. 分式的值为0,则x的值为,故该选项不正确,不符合题意;
D. 分式是最简分式,故该选项正确,符合题意;
故选:D.
9.【答案】:C
【解析】:解:∵DE是AC的垂直平分线,
∴AD=CD,AC=2AE=6cm,
又∵△ABD的周长=AB+BD+AD=13cm,
∴AB+BD+CD=13cm,
即AB+BC=13cm,
∴△ABC的周长=AB+BC+AC=13+6=19cm.
故选:C.
10.【答案】:A
【解析】:解:方程去分母得:m+1﹣x=0,
解得x=m+1,
当分式方程分母为0,即x=3时,方程无解,
则m+1=3,
解得m=2.
故选A.
11.【答案】:B
【解析】:作DE⊥AB于E,
∵AD平分∠BAC,DE⊥AB,DC⊥AC,
∴DE=CD=3,
∴△ABD的面积为×3×8=12,
故选:B.
12.【答案】:B
【解析】:原式=,
故选B.
【画龙点睛】本题考查了幂的混合运算,掌握幂的运算法则是解题的关键.
13.【答案】:D
【解析】:A选项,当时,有意义,故不符合题意;
B选项,当时,的值为0,故不符合题意;
C选项,,则无论x为何值,的值总为正数,故不符合题意;
D选项,当时,,故符合题意;
故选:D.
14.【答案】:A
【解析】:解:∵∠B=90°,∠A=30°,AC=a,
∴BC=AC=a,
∵以点C为圆心,CB长为半径画弧交AC于点D,
∴CD=BC=a,
∵以点A为圆心,AD长为半径画弧交AB于点E,
∴AD=AE=AC-CD=a,
∵AB=m,
∴BE=AB-AE=m-a,
故选:A.
15.【答案】:B
【解析】:解:在△ABC和△AEF中,
,
∴△ABC≌△AEF(SAS),
∴AF=AC,∠EAF=∠BAC,∠AFE=∠C,故②正确,
∴∠EAF﹣∠BAF=∠BAC﹣∠BAF,
∴∠EAB=∠FAC=44°,故①正确,
∵∠AFB=∠C+∠FAC=∠AFE+∠EFB,
∴∠EFB=∠FAC=44°,故③正确,
无法证明AD=AC,故④错误,
综上,①②③正确,
故选:B
16.【答案】:B
【解析】:∵△A1B1A2为等边三角形,
∴∠B1A1A2=60°,
∴∠OB1A1=∠B1A1A2−∠MON=30°,
∴∠OB1A1=∠MON,
∴A1B1=OA1=1,
同理可得A2B2=OA2=2,A3B3=OA3=4=22,
……,
∴△A2021B2021A2022的边长为.
故选:B.
二. 填空题
17.【答案】: x=-3
【解析】:解:方程两边同乘以x(x-3),
得2x=x-3,
解得x=-3.
经检验:x=-3是原方程的解,
故答案为:x=-3.
18.【答案】: 80°
【解析】:∵,
∴,,
设,
∴,
∴,
∵,
∴,
即,
解得:,
.
19.【答案】: ①②④
【解析】:如图所示:连接BD、DC.
①∵AD平分∠BAC,DE⊥AB,DF⊥AC,
∴ED=DF.故①正确.
②∵∠EAC=60°,AD平分∠BAC,
∴∠EAD=∠FAD=30°.
∵DE⊥AB,
∴∠AED=90°.
∵∠AED=90°,∠EAD=30°,
∴ED=AD.
同理:DF=AD.
∴DE+DF=AD.故②正确.
③由题意可知:∠EDA=∠ADF=60°.
假设MD平分∠ADF,则∠ADM=30°.则∠EDM=90°,
又∵∠E=∠BMD=90°,
∴∠EBM=90°.
∴∠ABC=90°.
∵∠ABC是否等于90°不知道,
∴不能判定MD平分∠EDF.故③错误.
④∵DM是BC的垂直平分线,
∴DB=DC.
在Rt△BED和Rt△CFD中
,
∴Rt△BED≌Rt△CFD.
∴BE=FC.
∴AB+AC=AE﹣BE+AF+FC
又∵AE=AF,BE=FC,
∴AB+AC=2AE.故④正确.
故答案为:①②④.
三.解答题
20【答案】:
(1);(2).
【解析】:
(1)原式=
=
;
(2)原式=
=..
21【答案】:
(1),0
(2),
【解析】:
【小问1详解】
解:原式
当时,代入解得原式.
【小问2详解】
原式
当时,代入解得原式.
22【答案】:
(1)图见解析,点的坐标为;
(2);
(3)见解析.
【解析】:
(1)分别找出A,B,C关于x轴对称的点A1,B1,C1,再顺次连接点即可;
(2)利用“关于谁对称谁不变,不关谁对称谁全变”可求出P的对称点坐标;
(3)过x轴作点A的对称点为A1,连接A1C交于x轴的点即为点P,使得最小.
【小问1详解】
解:先找出点A,B,C关于x轴对称的点A1,B1,C1,再顺次连接A1,B1,C1.
如图所示,即为所求:
的坐标为.
【小问2详解】
解:∵P关于y轴对称,则纵坐标不变,横坐标变成原来的相反数,
∴点P关于y轴对称的点的坐标是.
【小问3详解】
解:过x轴作点A的对称点为A1,连接A1C交于x轴的点即为点P,使得最小.点P如图所示:
【画龙点睛】本题考查作轴对称图形,找关于坐标轴对称的点的坐标,以及动点问题.关键是掌握画轴对称图形的方法:先找对称点,再连线;熟记关于坐标轴对称的点的坐标变化特征;利用对称性解决动点问题.
23【答案】:
(1)①作图见解析;②作图见解析;③作图见解析
(2)
【解析】:
【小问1详解】
①解:如图1,射线AD就是∠BAC的角平分线;
②解:作∠EBC=∠ADC,点E就是所求作的点,如图1所示;
③解:作线段的垂直平分线,如图1所示;
【小问2详解】
解:.
由(1)可知
∵∠CBE=∠ADC
∴
∴,
∴
∴
∴是等腰三角形
∵
∴.
【画龙点睛】本题考查了作角平分线、作一个角等于已知角、作线段的垂直平分线、等腰三角形的判定与性质.解题的关键在于对知识的灵活运用.
24【答案】:
(1)A;(2)①4;②5050
【解析】:
(1)图1表示,图2的面积表示,两个图形阴影面积相等,得到
故选A ;
(2)①
∵
∴,解得
②原式=(1002-992)+(982-972)+…+(42-32)+(22-12)
=(100+99)(100-99)+(98+97)(98-97)+…+(4+3)(4-3)+(2+1)(2-1)
=100+99+98+97+…+4+3+2+1
=101×50
=5050
【画龙点睛】本题考查了平方差公式的几何证明,题目较为简单,需要利用正方形和长方形的面积进行变形求解.
25【答案】:
刘峰骑自行车每小时行20千米,李明乘公交车每小时行60千米
【解析】:
解:设刘峰骑自行车每小时行x千米,则李明乘公交车每小时行千米,
根据题意,得,
解得,
经检验,是所列分式方程的解,且符合题意,
∴(千米/时),
答:刘峰骑自行车每小时行20千米,李明乘公交车每小时行60千米.
26【答案】:
(1)①;②;
(2),理由见解析;(3)
【解析】:
(1)①;②;
【解法提示】∵△ABC和△DCE都是等边三角形,
,,,,
即,
在和△DCB中,
,,,
∴△ECA≅△DCBSAS,
.
.
(2).
理由如下:△ABC和△DCE都是等腰直角三角形,
,,,,
,
又,
,
∴△ECA≅△DCBSAS,
,,
,
,
∵△DCE是等腰直角三角形,CM为△DCE中DE边上的高,
,
,
;
(3)∵△DCE是等腰三角形,,
,
,
由(1)同理可得△ECA≅△DCB,
,
,
∵△ABC是等腰三角形,,
,
.刘峰:我查好地图了,你看看
李明:好的,我家门口的公交车站,正好有一趟到科技馆那站停的车,我坐明天的车.
刘峰:从地图上看,我家到科技馆的距离比你家近10千米,我就骑自行车去了.
李明:行,根据我的经验,公交车的速度一般是你骑自行车速度的3倍,那你明天早上点从家出发,如顺利,咱俩同时到达.
相关试卷
这是一份河北省青县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共26页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省景县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共22页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省阜城县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共21页。试卷主要包含了选择题等内容,欢迎下载使用。