河北省固安县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解)
展开
这是一份河北省固安县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共24页。试卷主要包含了选择题等内容,欢迎下载使用。
1. 下列图形中,是轴对称图形的是( )
A. B. C. D.
2. 下列运算错误的是( )
A. B. C. D. a2÷a3=a-1 (a≠0)
3. 熔喷布,俗称口罩的“心脏”,是口罩中间的过滤层,能过滤细菌,阻止病菌传播.经测量,医用外科口罩的熔喷布厚度约为0.000156米,将0.000156用科学记数法表示应为( )
A. B. C. D.
4. 等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边长为( )
A. 7cmB. 3cmC. 9cmD. 5cm
5. 如与的乘积中不含的一次项,则的值为( )
A. B. 3C. 0D. 1
6. 下列各式中,正确的是( )
A.
B.
C.
D.
7. 已知等腰三角形的一个内角为50°,则它的另外两个内角是 ( )
A. 65°,65°B. 80°,50°
C. 65°,65°或80°,50°D. 不确定
8. 如图将直尺与含30°角的三角尺摆放在一起,若,则的度数是( )
A. B. C. D.
9. 如图,在等边△ABC中,AD、CE是△ABC的两条中线,,P是AD上一个动点,则最小值的是( )
A. 2.5B. 5C. 7.5D. 10
10. 一个三角形两边长分别为4和6,且第三边长为整数,这样的三角形的周长最小值是( )
A. 20B. 16C. 13D. 12
11. 如图,,下列等式不一定正确的是( )
A. B. C. D.
12. 如图,在Rt△ACD和Rt△BEC中,若AD=BE,DC=EC,则不正确的结论是( ).
A. Rt△ACD和Rt△BCE全等B. OA=OB
C. E是AC的中点D. AE=BD
13. 如图,在△ABC中,∠B=90°,∠A=30°,AC=a,AB=m,以点C为圆心,CB长为半径画弧交AC于点D,再以点A为圆心,AD长为半径画弧交AB于点E,则BE的长为( )
A. m﹣B. a﹣mC. 2a﹣mD. m﹣a
14. 中国首列商用磁浮列车平均速度为,计划提速,已知从A地到B地路程为,那么提速后从A地到B地节约的时间为( )
A. B. C. D.
15. 下列多项式不能用公式法进行因式分解的是( )
A. 1 a2B.
C. x2 2xy y2D. 4x2 4x 1
16. 如图,,平分,.若P到OA的距离为.若点,分别在射线,上,且△是边长为整数的等边三角形,则满足上述条件的点有(参考数据:( )
A. 4个以上B. 4个C. 3个D. 2个
二.填空题(本大题共3题,总计 12分)
17. 若,则分式__.
18. 如图,中,,,分别以点,为圆心,以大于的长为半径画弧交于点,,直线交于点,交于点.若,则__.
19. 如图,直线a∥b,点M、N分别为直线a和直线b上的点,连接MN,∠DMN=70°,点P是线段MN上一动点,直线DE始终经过点P,且与直线a、b分别交与点D、E,
(1)当△MPD与△NPE全等时,直接写出点P的位置:___________________;
(2)当△NPE是等腰三角形时,则∠NPE的度数为___________________.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. (1)计算:
(2)雯雯在计算时,解答过程如下:
雯雯的解答从第______步开始出错,请写出正确的解题过程.
21. 先化简,再求值:,其中.
22. 如图,△ABC的三个顶点的坐标分别是,,.
(1)在图中画出△ABC关于x轴对称的
(2)分别写出点A,B,C三点关于y轴对称的点,,的坐标;
(3)△ABC的面积为______.
23. 如图,ΔABC,ΔADE均是等边三角形,点B,D,E三点共线,连按CD,CE;且CD⊥BE.
(1)求证:BD=CE;
(2)若线段DE=3,求线段BD的长.
24. (1)若,求的值;
(2)请直接写出下列问题的答案:
①若,则___________;
②若,则__________.
25. 在学习“分式方程应用”时,张老师板书了如下的问题,小明和小亮两名同学都列出了对应的方程.
根据以上信息,解答下列问题:
(1)小明同学所列方程中x表示______,列方程所依据的等量关系是________________________________;小亮同学所列方程中y表示______,列方程所依据的等量关系是________________________________;
(2)请你在两个方程中任选一个,解答老师的例题.
26. 如图,△ABC中,AB=BC=AC=8cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.
(1)点M、N运动几秒时,M、N两点重合?
(2)点M、N运动几秒时,可得到等边三角形△AMN?
(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.
固安县2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:B
【解析】:轴对称的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够相互重合,则称该图形为轴对称图形.
根据定义,B选项的图形符合题意.
故选B.
2.【答案】:A
【解析】:A. ,故该选项不正确,符合题意;
B. ,故该选项正确,不符合题意;
C. ,故该选项正确,不符合题意;
D. a2÷a3=a-1 (a≠0) ,故该选项正确,不符合题意;
故选:A.
3.【答案】:C
【解析】:解:0.000156用科学记数法可表示为1.56×10﹣4.
故选:C.
4.【答案】:B
【解析】:当长是3cm的边是底边时,三边为3cm,5cm,5cm,等腰三角形成立;
当长是3cm的边是腰时,底边长是:13﹣3﹣3=7(cm),而3+3<7,不满足三角形的三边关系.
故底边长:3cm.
故选:B.
5.【答案】:A
【解析】:,
又与的乘积中不含的一次项,
,
解得.
故选:A.
6.【答案】:B
【解析】:解:A、 ,错误;
B、 ,正确;
C、 ,错误;
D、 ,错误.
故选:B.
7.【答案】:C
【解析】:若50°为顶角,则底角为,
即另外两个内角为65°,65°;
若50°为底角,则顶角为,
即另外两个内角为80°,50°,
综上可得另外两个内角为65°,65°或80°,50°,
故选C.
8.【答案】:C
【解析】:如图,
∵∠BEF是△AEF的外角,∠1=20,∠F=30,
∴∠BEF=∠1+∠F=50,
∵AB∥CD,
∴∠2=∠BEF=50,
故选:C.
9.【答案】:B
【解析】:解:连结PC,
∵△ABC为等边三角形,
∴AB=AC,
∵AD为中线,
∴AD⊥BC,BD=CD=,
∵点P在AD上,BP=CP,
∴PE+PB=PE+PC,
∵PE+PC≥CE
∴C、P、E三点共线时PE+CP最短=CE,
∵CE为△ABC的中线,
∴CE⊥AB,AE=BE=,
∵△ABC为等边三角形,
∴AB=BC,∠ABC=60°,
∴BE=BD,
在△ABD和△CBE中,
,
∴△ABD≌△CBE(SAS)
∴AD=CE=5,
∴PB+PE的最小值为5.
故选择B.
10.【答案】:C
【解析】:解:设三角形的第三边为x,
∵三角形的两边长分别为4和6,
∴2<x<10,
∵第三边为整数,
∴第三边x的最小值为3,
∴三角形周长的最小值为:3+4+6=13.
故选:C
11.【答案】:D
【解析】:,
,,,,
,
,
即只有选项符合题意,选项A、选项B、选项C都不符合题意;
故选:D.
12.【答案】:C
【解析】:解:A.∵∠C=∠C=90°,
∴△ACD和△BCE是直角三角形,
在Rt△ACD和Rt△BCE中,
∵AD=BE,DC=CE,
∴Rt△ACD≌Rt△BCE(HL),正确;
B.∵Rt△ACD≌Rt△BCE,
∴∠B=∠A,CB=CA,
∵CD=CE,
∴AE=BD,
在△AOE和△BOD中,
∵
∴△AOE≌△BOD(AAS),
∴AO=OB,正确,不符合题意;
C.AE=BD,CE=CD,不能推出AE=CE,错误,符合题意;
D.∵Rt△ACD≌Rt△BCE,
∴∠B=∠A,CB=CA,
∵CD=CE,
∴AE=BD,正确,不符合题意.
故选C.
13.【答案】:A
【解析】:解:∵∠B=90°,∠A=30°,AC=a,
∴BC=AC=a,
∵以点C为圆心,CB长为半径画弧交AC于点D,
∴CD=BC=a,
∵以点A为圆心,AD长为半径画弧交AB于点E,
∴AD=AE=AC-CD=a,
∵AB=m,
∴BE=AB-AE=m-a,
故选:A.
14.【答案】:C
【解析】:解:由题意可得
故选:C.
15.【答案】:B
【解析】:解:, 故A不符合题意;
不能用公式法分解因式,故B符合题意;
x2 2xy y2, 故C不符合题意;
, 故D不符合题意;
故选:B
16.【答案】:B
【解析】:解:在OB上截取OK=OP,连接PK,
∵,平分,
∴∠AOP=∠BOP=
∴△OPK为等边三角形
∴OK=PK=OP=10,∠OPK=∠PKN=60°
先证∠MPN=60°时,△PMN为等边三角形,如下
∴∠MPO=∠NPK,
∵∠MOP=∠NKP=60°,OP=KP
∴△MOP≌△NKP
∴PM=PN
∴△PMN为等边三角形,
∵点,分别在射线,上
∴PM的最大值为OP(此时点M与点O重合,点N与点K重合);
∵若P到OA的距离为.
∴PM的最小值为
∴≤PM≤10
∵△是边长为整数,即PM为整数
∴PM=9或10
若PM=9,以P为圆心,以9为半径,交OA于M1、M2,此时满足上述条件的点有两个;
若PM=10,以P为圆心,以10为半径,交OA于M3、M4,此时满足上述条件的点有两个;
综上:满足上述条件的点有4个.
故选B.
二. 填空题
17.【答案】: 1
【解析】:原分式,
,
.
故答案为:1.
18.【答案】: 6
【解析】:连接,如图,
由作法得垂直平分,
,
,
,
,
,
.
故答案为:6.
19.【答案】: ①. MN中点处 ②. 70°或40°或55°
【解析】:(1)∵a//b
∴∠DMN=∠PNE,∠MDE=∠DEN,
∴当△MPD与△NPE全等时,即△MPD≌△NPE时MP=NP,
即点P是MN的中点.
故答案为:MN中点处
(2)①若PN=PE时,
∵∠DMN=∠PNE=70°,
∴∠DMN =∠PNE=∠PEN=70°.
∴∠NPE=180°-∠PNE-∠PEN=180°-70°-70°=40°.
∴∠NPE =40°;
②若EP=EN时,则∠NPE =∠PNE=∠DMN =70°;
③若NP=NE时,则∠PEN=∠NPE,此时2∠NPE=180°-∠PNE=180°-∠DMN =180°-70°=110°
∴∠NPE =55°;
综上所述,∠NPE的值是40°或70°或55°.
故答案为:40°或70°或55°.
三.解答题
20【答案】:
(1);(2)一,见解析
【解析】:
(1)
;
(2)一,
m(1+m)−(m−1)2
=m+m2−(m2−2m+1)
=m+m2−m2+2m−1
=3m−1.
21【答案】:
,
【解析】:
原式
当时,
22【答案】:
(1)见解析;(2)、、;(3)2.5.
【解析】:
解:(1)如图,即是所作的图形;
(2),,
点A,B,C三点关于y轴对称点,,的坐标为:
、、;
(3)如图,
故答案为:.
.
23【答案】:
(1)见解析 (2)6
【解析】:
【小问1详解】
证明:∵△ABC、△ADE是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAC-∠DAC=∠DAE-∠DAC,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
∴△ABD≌△ACE(SAS),
∴BD=CE;
【小问2详解】
解:∵△ADE是等边三角形,
∴∠ADE=∠AED=60°,
∵点B,D,E三点共线
∴∠ADB=120°,
∵△ABD≌△ACE,
∴∠AEC=∠ADB=120°,
∴∠CED=∠AEC-∠AED=60°,
∵CD⊥BE,
∴∠CDE=90°,
∴∠DCE=30°,
∴BD=CE=2DE=6.
24【答案】:
(1)12;(2)①;②17
【解析】:
(1)∵,
∴,
∴;
(2)①∵,
∴=,
∴;
故答案为:;
②设a=4-x,b=5-x,
∵a-b=4-x-(5-x)=-1,
∴,
∴,
∵ab=,
∴,
∴,
故答案为:17.
25【答案】:
(1)甲队每天修路的米数;甲队修路800m与乙队修路1200m所用时间相等;甲队修路800m所用时间;乙队每天比甲队多修40m
(2)甲队每天修路为80m
【解析】:
【小问1详解】
x表示甲队每天修路的米数;
等量关系是:甲队修路800m与乙队修路1200m所用时间相等
y表示甲队修路800m所用时间;
等量关系是:乙队每天比甲队多修40m
【小问2详解】
解:若小明设甲队每天修xm,则:
解这个分式方程
经检验,是原分式方程的根
答:甲队每天修路为80m.
设甲队修路800m所用时间为y天,
,
解得:y=10,
经检验,是原分式方程的根,
(m),
答:甲队每天修路为80m.
26【答案】:
(1)点M,N运动8秒时,M、N两点重合;
(2)点M、N运动秒时,可得到等边三角形△AMN;
(3)当M、N运动秒时,得到以MN为底边的等腰三角形AMN
【解析】:
【小问1详解】
解:设运动t秒,M、N两点重合,
根据题意得:2t﹣t=8,
∴t=8,
答:点M,N运动8秒时,M、N两点重合;
【小问2详解】
解:设点M、N运动x秒时,可得到等边三角形△AMN,
∵△AMN是等边三角形,
∴AN=AM,
∴x=8﹣2x,
解得:x=,
∴点M、N运动秒时,可得到等边三角形△AMN;
【小问3详解】
设M、N运动y秒时,得到以MN为底边的等腰三角形AMN.
∵△ABC是等边三角形,
∴AB=AC,∠C=∠B=60°,
∵△AMN是以MN为底边的等腰三角形,
∴AM=AN,
∴∠AMN=∠ANM,
∵∠C=∠B,AC=AB,
∴△ACN≌△ABM(AAS),
∴CN=BM,
∴CM=BN,
∴y﹣8=8×3﹣2y,
∴y=.
答:当M、N运动秒时,得到以MN为底边等腰三角形AMN
【画龙点睛】本题是三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质,利用方程的思想解决问题是本题的关键.
…………第一步
…………第二步
…………第三步
15.3分式方程
例:有甲乙两个工程队,甲队修路800m与乙队修路1200m所用时间相等,乙队每天比甲队多修40m,求甲队每天修路的长度
小明: 小亮:
相关试卷
这是一份河北省故城县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共23页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省阜城县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共21页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省大城县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共21页。试卷主要包含了选择题等内容,欢迎下载使用。