所属成套资源:河北省各地区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
河北省青龙满族自治县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
展开
这是一份河北省青龙满族自治县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共24页。试卷主要包含了选择题等内容,欢迎下载使用。
1. 下列图形中,是轴对称图形的是( )
A. B. C. D.
2. 下列运算正确的是( )
①;②;③;④;⑤
A. ①⑤B. ①④⑤C. ②④⑤D. ②③⑤
3. 华为手机使用了自主研发的海思麒麟芯片,目前最新的型号是麒麟990.芯片是由很多晶体管组成的,而芯片技术追求是体积更小的晶体管,以便获得更小的芯片和更低的电力功耗,而麒麟990的晶体管栅极的宽度达到了毫米,将数据用科学记数法表示为( )
A. B. C. D.
4. 若分式有意义,则x应该满足的条件是( )
A. B. C. D.
5. 等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边长为( )
A. 7cmB. 3cmC. 9cmD. 5cm
6. 下列长度的三条线段,能组成三角形的是( )
A. 3,5,6B. 3,2,1C. 2,2,4D. 3,6,10
7. 现有两根木棒,它们的长是20cm和30cm,若要钉成一个三角形木架,则应选取的第三根木棒长为( )
A. 10cmB. 50cmC. 60cmD. 40cm
8. 如果关于x的方程无解,则m的值是( )
A. 2B. 0C. 1D. –2
9. 如图,在 ABC 中,ED / / BC ,ABC 和 ACB 的平分线分别交 ED 于点 G 、F ,若 FG 2 ,ED 6 ,则EB DC 的值为( )
A. 6B. 7
C. 8D. 9
10. 如图,△ABC≌△ADE,且AE∥BD,∠BAD=94°,则∠BAC的度数的值为( )
A. 84°B. 60°C. 48°D. 43°
11. 练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有
① ②
③ ④
A. 1个B. 2个C. 3个D. 4个
12. 如图,在△ABD中,∠D=20°,CE垂直平分AD,交BD于点C,交AD于点E,连接AC,若AB=AC,则∠BAD的度数是( )
A. 100°B. 110°C. 120°D. 150°
13. △ABC中,∠C=90°,∠A的平分线交BC于点D,如果AB=8,CD=3,则△ABD的面积为( )
A. 24B. 12C. 8D. 6
14. 如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分∠ABC,A'C平分∠ACB.若∠BA'C=110°,则∠1+∠2的度数为( )
A. 80°B. 90°C. 100°D. 110°
15. 若关于x的方程的解为正数,则m的取值范围是
A. m6C. m6且m≠8
16. 北京大兴国际机场于2019年9月25日正式投入运营.小贝和小京分别从A地和B地出发赶往机场乘坐飞机,出行方式、路径及路程如下表所示:
由于地面交通拥堵,地铁的平均速度约为公交平均速度的两倍,于是小贝比小京少用了半小时到达机场.若设公交的平均速度为x公里/时,根据题意可列方程( )
A. B.
C. D.
二.填空题(本大题共3题,总计 12分)
17. 若,则可表示为________(用含a、b的代数式表示).
18. 如图,在平面直角坐标系中,A(4,0),B(0,3),以线段AB为直角边在第一象限内作等腰直角三角形ABC,AB=AC,∠BAC=90°,则点C坐标为_______.
19. 如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为______.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. 计算
(1)(﹣2a2)(3ab2﹣5ab3)
(2)(5x+2y)•(3x﹣2y)
21. 化简:.
22. 在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为.
(1)请在如图所示的网格内作出x轴、y轴;
(2)请作出∆ABC关于y轴对称的∆,并写出点的坐标;
(3)求出∆的面积.
23. 如图(1)在凸四边形中,.
(1)如图(2),若连接,则△ADC的形状是________三角形,你是根据哪个判定定理?
答:______________________________________(请写出定理的具体内容)
(2)如图(3),若在四边形的外部以为一边作等边,并连接.请问:与相等吗?若相等,请加以证明;若不相等,请说明理由.
24. 计算:
(1)已知,求的值;
(2)已知实数m、n满足m2﹣10mn+26n2+4n+4=0,求mn的值.
25. 在今年新冠肺炎防疫工作中,某公司购买了、两种不同型号口罩,已知型口罩的单价比型口罩的单价多1.5元,且用8000元购买型口罩的数量与用5000元购买型口罩的数量相同.
(1)、两种型号口罩的单价各是多少元?
(2)根据疫情发展情况,该公司还需要增加购买一些口罩,增加购买型口罩数量是型口罩数量的2倍,若总费用不超过3800元,则增加购买型口罩的数量最多是多少个?
26. 已知在平面直角坐标系中,点在x轴上,点B在y轴正半轴上,点C在第一象限内移动,,.
(1)如图1,当,点C的坐标为时,若D为的中点,点E在上,连接,过点D作,交于点F,点F的坐标为.
①求证:;
②点E的坐标为___________;
(2)如图2,当,点C关于x轴对称的点的坐标为时,分别求点B,点C的坐标;
(3)在(2)的条件下,该平面直角坐标系内存在点G(点G不与点A重合),使得是以为直角边的等腰直角三角形,请直接写出满足条件的点G的坐标.
青龙满族自治县2024-2025学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:B
【解析】:轴对称的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够相互重合,则称该图形为轴对称图形.
根据定义,B选项的图形符合题意.
故选B.
2.【答案】:B
【解析】:解:①,计算正确;
②,计算错误;
③,计算错误;
④,计算正确;
⑤,计算正确.
故选:B.
3.【答案】:B
【解析】:解:=7×10-9.
故选:B.
4.【答案】:B
【解析】:解:由题意,得x+1≠0,解得:x≠-1,
故选:B.
5.【答案】:B
【解析】:当长是3cm的边是底边时,三边为3cm,5cm,5cm,等腰三角形成立;
当长是3cm的边是腰时,底边长是:13﹣3﹣3=7(cm),而3+3<7,不满足三角形的三边关系.
故底边长:3cm.
故选:B.
6.【答案】:A
【解析】:A. ∵3+5>6,∴长度为3,5,6的三条线段能组成三角形,故该选项符合题意,
B. ∵1+2=3,∴长度为3,2,1的三条线段不能组成三角形,故该选项不符合题意,
C. ∵2+2=4,∴长度为2,2,4的三条线段不能组成三角形,故该选项不符合题意,
D. ∵3+6<10,∴长度为3,6,10三条线段不能组成三角形,故该选项不符合题意,
故选A
7.【答案】:D
【解析】:解:根据三角形三边关系,
∴三角形的第三边x满足:,即,
故选:D.
8.【答案】:A
【解析】:解:方程去分母得:m+1﹣x=0,
解得x=m+1,
当分式方程分母为0,即x=3时,方程无解,
则m+1=3,
解得m=2.
故选A.
9.【答案】:C
【解析】:∵ED∥BC,
∴∠EGB=∠GBC,∠DFC=∠FCB,
∵∠GBC=∠GBE,∠FCB=∠FCD,
∴∠EGB=∠EBG,∠DCF=∠DFC,
∴BE=EG,CD=DF,
∵FG=2,ED=6,
∴EB+CD=EG+DF=EF+FG+FG+DG=ED+FG=8,
故选C.
10.【答案】:D
【解析】:∵△ABC≌△ADE,∠BAD=94°,
∴AB=AD,∠BAC=∠DAE,
∴∠ABD=∠ADB=×(180°﹣94°)=43°,
∵AE//BD,
∴∠DAE=∠ADB=43°,
∴∠BAC=∠DAE=43°.
故选:D.
11.【答案】:B
【解析】::①x3+x=x(x2+1),不符合题意;
②x2-2xy+y2=(x-y)2,符合题意;
③a2-a+1不能分解,不符合题意;
④x2-16y2=(x+4y)(x-4y),符合题意,
故选B
12.【答案】:C
【解析】:解:∵CE垂直平分AD,
∴,
∴,
∴,
∵AB=AC,
∴,
∴,
∴,
故选:C.
13.【答案】:B
【解析】:作DE⊥AB于E,
∵AD平分∠BAC,DE⊥AB,DC⊥AC,
∴DE=CD=3,
∴△ABD的面积为×3×8=12,
故选:B.
14.【答案】:A
【解析】:解:连接AA′,如图:
∵A'B平分∠ABC,A'C平分∠ACB,∠BA'C=110°,
∴∠A′CB+∠A′BC=70°,
∴∠ACB+∠ABC=140°,
∴∠BAC=180°-140°=40°,
∴∠1=∠DAA′+∠DA′A,∠2=∠EAA′+∠EA′A,
∵∠DAA′=∠DA′A,∠EAA′=∠EA′A,
∴∠1+∠2=2(∠DAA′+∠EAA′)=2∠BAC=80°.
故选:A
15.【答案】:C
【解析】:原方程化为整式方程得:2﹣x﹣m=2(x﹣2),
解得:x=2﹣,
∵原方程的解为正数,
∴2﹣>0,
解得m<6,
又∵x﹣2≠0,
∴2﹣≠2,即m≠0.
故选C.
16.【答案】:B
【解析】:解:设公交的平均速度为x公里/时,则地铁的平均速度为2x公里/时,
由题意得:,
故选B.
二. 填空题
17.【答案】: .
【解析】:∵,
∴====.
故答案为:.
18.【答案】: (7,4)
【解析】:解:作CD⊥x轴于点D,则∠CDA=90°,
∵A(4,0),B(0,3),
∴
是等腰直角三角形,∠BAC=90°,
又∵∠BAD+∠ABO=90°,
∴∠ABO=∠CAD,
∠BAD+∠CAD=90°,
在△BOA和△ADC中,
∴△BOA≌△ADC(AAS),
∴BO=AD=3,OA=DC=4,
∴点C的坐标为(7,4);
故答案为:(7,4)
19.【答案】:
【解析】:解:如图作AF⊥x轴于F,CE⊥x轴于E.
∵四边形ABCO是正方形,
∴OA=OC,∠AOC=90°,
∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,
∴∠COE=∠OAF,
在△COE和△OAF中,
,
∴△COE≌△OAF,
∴CE=OF,OE=AF,
∵A(1,),
∴CE=OF=1,OE=AF=,
∴点C坐标,
故答案为:.
三.解答题
20【答案】:
(1)﹣6a3b2+10a3b3
(2)15x2﹣4xy﹣4y2.
【解析】:
(1)(﹣2a2)(3ab2﹣5ab3)=﹣6a3b2+10a3b3;
(2)(5x+2y)•(3x﹣2y)
=15x2﹣10xy+6xy﹣4y2)
=15x2﹣4xy﹣4y2.
21【答案】:
【解析】:
解:原式=
=
= .
22【答案】:
(1)点C向右平移一个格为y轴,点C向下平移3个格为x轴,两轴交点为原点O,建立如图平面直角坐标系,图形见详解;
(2)图形见详解,;
(3)4.
【解析】:
(1)点C向右平移一个格为y轴,点C向下平移3个格为x轴,两轴交点为原点O,建立如图平面直角坐标系,点B坐标为(-2,1);
(2)∆ABC关于y轴对称的∆,关于y轴对称点的坐标特征是横坐标互为相反数,纵坐标不变,
∵点,
∴它们的对称点,
在平面直角坐标系中,描点,然后顺次连结,
则∆ABC关于y轴对称的三角形是∆ ,点;
(3)过C1、A1作平行y轴的直线,与过第A1、B1作平行x轴的平行线交于E,A1,F,G,
∴,
=,
=12-3-1-4,
=4.
23【答案】:
(1)等边三角形;一个内角为60°的等腰三角形是等边三角形;
(2),理由见解析.
【解析】:
解:(1)连接,
在△ADC中,
,
△ADC是等腰三角形,
又
△ADC是等边三角形(一个内角为60°的等腰三角形是等边三角形)
故答案为:等边三角形;一个内角为60°的等腰三角形是等边三角形;
(2),理由如下:
△ADC是等边三角形,
又是等边三角形,
,
即
∴△BDC≅△EAC(SAS)
.
【画龙点睛】本题考查等边三角形的判定与性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.
24【答案】:
(1)±1; (2)
【解析】:
【小问1详解】
解:∵,
∴,
∴,
即,
解得,
∴的值为;
【小问2详解】
解:∵m2﹣10mn+26n2+4n+4=0,
∴m2﹣10mn+25n2+n2+4n+4=0,
∴(m﹣5n)2+(n+2)2=0,
∴m﹣5n=0,n+2=0,
∴n=﹣2,m=﹣10,
∴mn=,
∴mn的值为.
【画龙点睛】本题主要考查利用完全平方和、完全平方差公式求代数式的值,需要熟练掌握及其变形.
25【答案】:
(1)型口罩单价为4元/个,型口罩单价为2.5元/个;
(2)增加购买型口罩的数量最多是422个
【解析】:
(1)设型口罩单价为元/个,则型口罩单价为元/个,
根据题意,得:,解方程,得,
经检验:是原方程的根,且符合题意,∴(元),
答:型口罩单价为4元/个,型口罩单价为2.5元/个;
(2)设增加购买型口罩的数量是个,则增加购买型口罩数量是2个,
根据题意,得:,
解不等式,得:,
∵为正整数,∴正整数的最大值为422,
答:增加购买型口罩的数量最多是422个.
【画龙点睛】本题考查了分式方程和不等式的应用,属于常考题型,正确理解题意、找准相等与不等关系是解题的关键.
26【答案】:
(1)①见解析;②
(2)
(3)或或
【解析】:
【小问1详解】
解:①连接.
,为的中点,
,平分,
,.
,
,
,
,
.
又,
,
.
,
;
②如图1,过点作轴,轴,分别交轴,轴于点,;过点作轴,轴,分别交轴,轴于点,,直线交于点;过点作轴于点,
,
,
,
,
,
,
,,
,
即点的坐标为,
故答案为:;
【小问2详解】
解:如图2,过点作轴,轴,分别交轴,轴于点,.
由题可得,,
点,点的坐标为,
点的坐标为,
,
.
在和中,
,
,
,
,
点的坐标为;
【小问3详解】
解:如图3,
若,时,且点在下方,过点作,过点作,
,,
,且,,
,
,,
,
点,
若,时,且点在上方,
同理可求点,
若,时,点在上方,
同理可求点,
综上所述,点的坐标为或或.
出行方式
路径
路程
地铁
A地→大兴机场
全程约43公里
公交
B地→大兴机场
全程约54公里
相关试卷
这是一份河北省赵县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共22页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省蠡县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共26页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省磁县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共24页。试卷主要包含了选择题等内容,欢迎下载使用。