年终活动
搜索
    上传资料 赚现金

    山东省德州市中考数学试卷(含解析版)

    立即下载
    加入资料篮
    山东省德州市中考数学试卷(含解析版)第1页
    山东省德州市中考数学试卷(含解析版)第2页
    山东省德州市中考数学试卷(含解析版)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省德州市中考数学试卷(含解析版)

    展开

    这是一份山东省德州市中考数学试卷(含解析版),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    1.(3分)(2015•德州)||的值是( )
    2.(3分)(2015•德州)某几何体的三视图如图所示,则此几何体是( )
    3.(3分)(2015•德州)2014年德州市农村中小学校含标准化工程开工学校项目356个,开工面积56.2万平方米,开式面积量创历年最高,56.2万平方米用科学记数法表示正确的是( )
    4.(3分)(2015•德州)下列运算正确的是( )
    5.(3分)(2015•德州)一组数1,1,2,x,5,y…满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为( )
    6.(3分)(2015•德州)如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为( )
    7.(3分)(2015•德州)若一元二次方程x2+2x+a=0的有实数解,则a的取值范围是( )
    8.(3分)(2015•德州)下列命题中,真命题的个数是( )
    ①若﹣1<x<﹣,则﹣2;②若﹣1≤x≤2,则1≤x2≤4
    ③凸多边形的外角和为360°;④三角形中,若∠A+∠B=90°,则sinA=csB.
    9.(3分)(2015•德州)如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为( )
    10.(3分)(2015•德州)经过某十字路口的汽车,可能直行,也可能左转或者右转,如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是( )
    11.(3分)(2015•德州)如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是( )
    12.(3分)(2015•德州)如图,平面直角坐标系中,A点坐标为(2,2),点P(m,n)在直线y=﹣x+2上运动,设△APO的面积为S,则下面能够反映S与m的函数关系的图象是( )

    二、填空题(每小题4分)
    13.(4分)(2015•德州)计算2﹣2+()0= .
    14.(4分)(2015•德州)方程﹣=1的解是 .
    15.(4分)(2015•德州)在射击比赛中,某运动员的6次射击成绩(单位:环)为:7,8,10,8,9,6,计算这组数据的方差为 .
    16.(4分)(2015•德州)如图,某建筑物BC上有一旗杆AB,从与BC相距38m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,则旗杆的高度均为 m.(结果精确到0.1m,参考数据:sin50°≈0.77,cs50°≈0.64,tan50°≈1.19)
    17.(4分)(2015•德州)如图1,四边形ABCD中,AB∥CD,AD=DC=CB=a,∠A=60°.取AB的中点A1,连接A1C,再分别取A1C,BC的中点D1,C1,连接D1C1,得到四边形A1BC1D1.如图2,同样方法操作得到四边形A2BC2D2,如图3,…,如此进行下去,则四边形AnBCnDn的面积为 .

    三、解答题:
    18.(6分)(2015•德州)先化简,再求值:÷(a﹣),其中a=2+,b=2﹣.

    19.(8分)(2015•德州)2014年1月,国家发改委出台指导意见,要求底前,所有城市原则上全面实行居民阶梯水价制度,小明为了解市政府调整水价方案的社会反响,随机访问了自己居住小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图2.
    小明发现每月每户的用水量在5m3﹣35m3之间,有8户居民对用水价格调价涨幅抱无所谓,不会考虑用水方式的改变,根据小明控制的图表和发现的信息,完成下列问题:
    (1)n= ,小明调查了 户居民,并补全图1;
    (2)每月每户用水量的中位数和众数分别落在什么范围?
    (3)如果小明所在小区有1800户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少.

    20.(8分)(2015•德州)如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB,
    (1)求证:四边形AEBD是菱形;
    (2)如果OA=3,OC=2,求出经过点E的反比例函数解析式.

    21.(10分)(2015•德州)如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.
    (1)判断△ABC的形状: ;
    (2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;
    (3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.

    22.(10分)(2015•德州)某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.
    (1)根据图象求y与x的函数关系式;
    (2)商店想在销售成本不超过3000元的情况下,使销售利润达到2400元,销售单价应定为多少?

    23.(10分)(2015•德州)(1)问题
    如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°,求证:AD•BC=AP•BP.
    (2)探究
    如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.
    (3)应用
    请利用(1)(2)获得的经验解决问题:
    如图3,在△ABD中,AB=6,AD=BD=5,点P以每秒1个单位长度的速度,由点A出了,沿边AB向点B运动,且满足∠DPC=∠A,设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切时,求t的值.
    24.(12分)(2015•德州)已知抛物线y=﹣mx2+4x+2m与x轴交于点A(α,0),B(β,0),且=﹣2,
    (1)求抛物线的解析式.
    (2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.
    (3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.


    山东省德州市中考数学试卷
    参考答案与试题解析

    一、选择题
    1.(3分)(2015•德州)||的值是( )

    2.(3分)(2015•德州)某几何体的三视图如图所示,则此几何体是( )

    3.(3分)(2015•德州)2014年德州市农村中小学校含标准化工程开工学校项目356个,开工面积56.2万平方米,开式面积量创历年最高,56.2万平方米用科学记数法表示正确的是( )

    4.(3分)(2015•德州)下列运算正确的是( )

    5.(3分)(2015•德州)一组数1,1,2,x,5,y…满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为( )

    6.(3分)(2015•德州)如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为( )

    7.(3分)(2015•德州)若一元二次方程x2+2x+a=0的有实数解,则a的取值范围是( )

    8.(3分)(2015•德州)下列命题中,真命题的个数是( )
    ①若﹣1<x<﹣,则﹣2;
    ②若﹣1≤x≤2,则1≤x2≤4
    ③凸多边形的外角和为360°;
    ④三角形中,若∠A+∠B=90°,则sinA=csB.

    9.(3分)(2015•德州)如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为( )

    10.(3分)(2015•德州)经过某十字路口的汽车,可能直行,也可能左转或者右转,如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是( )

    11.(3分)(2015•德州)如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论:
    ①OA=OD;
    ②AD⊥EF;
    ③当∠A=90°时,四边形AEDF是正方形;
    ④AE+DF=AF+DE.
    其中正确的是( )

    12.(3分)(2015•德州)如图,平面直角坐标系中,A点坐标为(2,2),点P(m,n)在直线y=﹣x+2上运动,设△APO的面积为S,则下面能够反映S与m的函数关系的图象是( )

    二、填空题(每小题4分)
    13.(4分)(2015•德州)计算2﹣2+()0= .

    14.(4分)(2015•德州)方程﹣=1的解是 x=2 .

    15.(4分)(2015•德州)在射击比赛中,某运动员的6次射击成绩(单位:环)为:7,8,10,8,9,6,计算这组数据的方差为 .

    16.(4分)(2015•德州)如图,某建筑物BC上有一旗杆AB,从与BC相距38m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,则旗杆的高度均为 7.2 m.(结果精确到0.1m,参考数据:sin50°≈0.77,cs50°≈0.64,tan50°≈1.19)

    17.(4分)(2015•德州)如图1,四边形ABCD中,AB∥CD,AD=DC=CB=a,∠A=60°.取AB的中点A1,连接A1C,再分别取A1C,BC的中点D1,C1,连接D1C1,得到四边形A1BC1D1.如图2,同样方法操作得到四边形A2BC2D2,如图3,…,如此进行下去,则四边形AnBCnDn的面积为 a2 .

    三、解答题:
    18.(6分)(2015•德州)先化简,再求值:÷(a﹣),其中a=2+,b=2﹣.

    19.(8分)(2015•德州)2014年1月,国家发改委出台指导意见,要求底前,所有城市原则上全面实行居民阶梯水价制度,小明为了解市政府调整水价方案的社会反响,随机访问了自己居住小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图2.
    小明发现每月每户的用水量在5m3﹣35m3之间,有8户居民对用水价格调价涨幅抱无所谓,不会考虑用水方式的改变,根据小明控制的图表和发现的信息,完成下列问题:
    (1)n= 210 ,小明调查了 96 户居民,并补全图1;
    (2)每月每户用水量的中位数和众数分别落在什么范围?
    (3)如果小明所在小区有1800户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少.

    20.(8分)(2015•德州)如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB,
    (1)求证:四边形AEBD是菱形;
    (2)如果OA=3,OC=2,求出经过点E的反比例函数解析式.

    21.(10分)(2015•德州)如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.
    (1)判断△ABC的形状: 等边三角形 ;
    (2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;
    (3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.

    22.(10分)(2015•德州)某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.
    (1)根据图象求y与x的函数关系式;
    (2)商店想在销售成本不超过3000元的情况下,使销售利润达到2400元,销售单价应定为多少?

    23.(10分)(2015•德州)(1)问题
    如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°,求证:AD•BC=AP•BP.
    (2)探究
    如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.
    (3)应用
    请利用(1)(2)获得的经验解决问题:
    如图3,在△ABD中,AB=6,AD=BD=5,点P以每秒1个单位长度的速度,由点A出了,沿边AB向点B运动,且满足∠DPC=∠A,设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切时,求t的值.

    24.(12分)(2015•德州)已知抛物线y=﹣mx2+4x+2m与x轴交于点A(α,0),B(β,0),且=﹣2,
    (1)求抛物线的解析式.
    (2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.
    (3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.


    A.
    B.
    C.
    ﹣2
    D.
    2

    A.
    圆锥
    B.
    圆柱
    C.
    长方体
    D.
    四棱柱

    A.
    5.62×104m2
    B.
    56.2×104m2
    C.
    5.62×105m2
    D.
    0.562×104m2

    A.
    ﹣=
    B.
    b2•b3=b6
    C.
    4a﹣9a=﹣5
    D.
    (ab2)2=a2b4

    A.
    8
    B.
    9
    C.
    13
    D.
    15

    A.
    35°
    B.
    40°
    C.
    50°
    D.
    65°

    A.
    a<1
    B.
    a≤4
    C.
    a≤1
    D.
    a≥1

    A.
    4
    B.
    3
    C.
    2
    D.
    1

    A.
    288°
    B.
    144°
    C.
    216°
    D.
    120°

    A.
    B.
    C.
    D.

    A.
    ②③
    B.
    ②④
    C.
    ①③④
    D.
    ②③④

    A.
    B.
    C.
    D.

    A.
    B.
    C.
    ﹣2
    D.
    2
    考点:
    绝对值.
    分析:
    绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
    解答:
    解:根据负数的绝对值是它的相反数,得||=.
    故选B.
    点评:
    本题考查了绝对值的性质.

    A.
    圆锥
    B.
    圆柱
    C.
    长方体
    D.
    四棱柱
    考点:
    简单几何体的三视图.
    分析:
    根据三视图的主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析可知几何体的名称.
    解答:
    解:∵主视图和左视图都是长方形,
    ∴此几何体为柱体,
    ∵俯视图是一个圆,
    ∴此几何体为圆柱,
    故选:B.
    点评:
    此题考查了由三视图判断几何体,用到的知识点为:由主视图和左视图可得几何体是柱体,椎体还是球体,由俯视图可确定几何体的具体形状.

    A.
    5.62×104m2
    B.
    56.2×104m2
    C.
    5.62×105m2
    D.
    0.562×104m2
    考点:
    科学记数法—表示较大的数.
    分析:
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    解答:
    解:56.2万=562000=5.62×105,
    故选C,
    点评:
    此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

    A.
    ﹣=
    B.
    b2•b3=b6
    C.
    4a﹣9a=﹣5
    D.
    (ab2)2=a2b4
    考点:
    幂的乘方与积的乘方;合并同类项;同底数幂的乘法;二次根式的加减法.
    分析:
    A:根据二次根式的加减法的运算方法判断即可;
    B:根据同底数幂的乘法法则判断即可;
    C:根据合并同类项的方法判断即可;
    D:积的乘方法则:(ab)n=anbn(n是正整数),据此判断即可.
    解答:
    解:∵,
    ∴选项A错误;
    ∵b2•b3=b5,
    ∴选项B错误;
    ∵4a﹣9a=﹣5a,
    ∴选项C错误;
    ∵(ab2)2=a2b4,
    ∴选项D正确.
    故选:D.
    点评:
    (1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.
    (2)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(am)n=amn(m,n是正整数);②(ab)n=anbn(n是正整数).
    (3)此题还考查了合并同类项问题,要熟练掌握,解答此题的关键是要明确合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.
    (4)此题还考查了二次根式的加减法,要熟练掌握,解答此题的关键是要明确二次根式的加减法的步骤:①如果有括号,根据去括号法则去掉括号.②把不是最简二次根式的二次根式进行化简.③合并被开方数相同的二次根式.

    A.
    8
    B.
    9
    C.
    13
    D.
    15
    考点:
    规律型:数字的变化类.
    分析:
    根据每个数都等于它前面的两个数之和,可得x=1+2=3,y=x+5=3+5=8,据此解答即可.
    解答:
    解:∵每个数都等于它前面的两个数之和,
    ∴x=1+2=3,
    ∴y=x+5=3+5=8,
    即这组数中y表示的数为8.
    故选:A.
    点评:
    此题主要考查了探寻数列规律问题,注意观察总结规律,并能正确的应用规律,解答此题的关键是求出x的值是多少.

    A.
    35°
    B.
    40°
    C.
    50°
    D.
    65°
    考点:
    旋转的性质.
    分析:
    根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.
    解答:
    解:∵CC′∥AB,
    ∴∠ACC′=∠CAB=65°,
    ∵△ABC绕点A旋转得到△AB′C′,
    ∴AC=AC′,
    ∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,
    ∴∠CAC′=∠BAB′=50°.
    故选C.
    点评:
    本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.

    A.
    a<1
    B.
    a≤4
    C.
    a≤1
    D.
    a≥1
    考点:
    根的判别式.
    分析:
    若一元二次方程x2+2x+a=0的有实数解,则根的判别式△≥0,据此可以列出关于a的不等式,通过解不等式即可求得a的值.
    解答:
    解:因为关于x的一元二次方程有实根,
    所以△=b2﹣4ac=4﹣4a≥0,
    解之得a≤1.
    故选C.
    点评:
    本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.

    A.
    4
    B.
    3
    C.
    2
    D.
    1
    考点:
    命题与定理.
    分析:
    根据分式成立的条件对①进行判断;根据乘方的意义对②进行判断;根据多边形外角和定理对③进行判断;根据互余公式对④进行判断.
    解答:
    解:若﹣1<x<﹣,﹣2,所以①正确;
    若﹣1≤x≤2,则0≤x2≤4,所以②错误;
    凸多边形的外角和为360°,所以③正确;
    三角形中,若∠A+∠B=90°,则sinA=csB,所以④正确.
    故选B.
    点评:
    本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.

    A.
    288°
    B.
    144°
    C.
    216°
    D.
    120°
    考点:
    圆锥的计算.
    分析:
    根据底面圆的半径与母线长的比设出二者,然后利用底面圆的周长等于弧长列式计算即可.
    解答:
    解:∵底面圆的半径与母线长的比是4:5,
    ∴设底面圆的半径为4x,
    则母线长是5x,
    设圆心角为n°,
    则2π×4x=,
    解得:n=288,
    故选A.
    点评:
    本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.

    A.
    B.
    C.
    D.
    考点:
    列表法与树状图法.
    分析:
    此题可以采用列表法或树状图求解.可以得到一共有9种情况,两辆汽车一辆左转,一辆右转的有2种情况,根据概率公式求解即可.
    解答:
    解:(1)画“树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:
    ∴这两辆汽车行驶方向共有9种可能的结果;
    (2)由(1)中“树形图”知,两辆汽车一辆左转,一辆右转的结果有2种,且所有结果的可能性相等,
    ∴P(两辆汽车一辆左转,一辆右转)=.
    故选C.
    点评:
    此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.

    A.
    ②③
    B.
    ②④
    C.
    ①③④
    D.
    ②③④
    考点:
    角平分线的性质;全等三角形的判定与性质;正方形的判定.
    分析:
    ①如果OA=OD,则四边形AEDF是矩形,∠A=90°,不符合题意,所以①不正确.
    ②首先根据全等三角形的判定方法,判断出△AED≌△AFD,AE=AF,DE=DF;然后根据全等三角形的判定方法,判断出△AE0≌△AFO,即可判断出AD⊥EF.
    ③首先判断出当∠A=90°时,四边形AEDF的四个角都是直角,四边形AEDF是矩形,然后根据DE=DF,判断出四边形AEDF是正方形即可.
    ④根据△AED≌△AFD,判断出AE=AF,DE=DF,即可判断出AE+DF=AF+DE成立,据此解答即可.
    解答:
    解:如果OA=OD,则四边形AEDF是矩形,∠A=90°,不符合题意,
    ∴①不正确;
    ∵AD是△ABC的角平分线,
    ∴∠EAD∠FAD,
    在△AED和△AFD中,
    ∴△AED≌△AFD(AAS),
    ∴AE=AF,DE=DF,
    ∴AE+DF=AF+DE,
    ∴④正确;
    在△AEO和△AFO中,

    ∴△AE0≌△AF0(SAS),
    ∴EO=FO,
    又∵AE=AF,
    ∴AO是EF的中垂线,
    ∴AD⊥EF,
    ∴②正确;
    ∵当∠A=90°时,四边形AEDF的四个角都是直角,
    ∴四边形AEDF是矩形,
    又∵DE=DF,
    ∴四边形AEDF是正方形,
    ∴③正确.
    综上,可得
    正确的是:②③④.
    故选:D.
    点评:
    (1)此题主要考查了三角形的角平分线的性质和应用,以及直角三角形的性质和应用,要熟练掌握.
    (2)此题还考查了全等三角形的判定和应用,要熟练掌握.
    (3)此题还考查了矩形、正方形的性质和应用,要熟练掌握.

    A.
    B.
    C.
    D.
    考点:
    动点问题的函数图象.
    分析:
    根据题意得出临界点P点横坐标为1时,△APO的面积为0,进而结合底边长不变得出即可.
    解答:
    解:∵点P(m,n)在直线y=﹣x+2上运动,
    ∴当m=1时,n=1,即P点在直线AO上,此时S=0,
    当0<m≤1时,S△APO不断减小,当m>1时,S△APO不断增大,且底边AO不变,故S与m是一次函数关系.
    故选:B.
    点评:
    此题主要考查了动点问题的函数图象,根据题意得出临界点是解题关键.
    考点:
    实数的运算;零指数幂;负整数指数幂.
    分析:
    首先根据负整数指数幂的运算方法,求出2﹣2的值是多少;然后根据a0=1(a≠0),求出的值是多少;最后再求和,求出算式2﹣2+()0的值是多少即可.
    解答:
    解:2﹣2+()0
    =+1
    =
    故答案为:.
    点评:
    (1)此题主要考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a﹣p=(a≠0,p为正整数);(2)计算负整数指数幂时,一定要根据负整数指数幂的意义计算;(3)当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.
    (2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a0=1(a≠0);(2)00≠1.
    考点:
    解分式方程.
    专题:
    计算题.
    分析:
    分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    解答:
    解:去分母得:x2﹣2x+2=x2﹣x,
    解得:x=2,
    经检验x=2是分式方程的解,
    故答案为:x=2
    点评:
    此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
    考点:
    方差.
    专题:
    计算题.
    分析:
    先计算出这组数据的平均数,然后根据方差公式求解.
    解答:
    解:平均数=(7+8+10+8+9+6)=8,
    所以方差S2=[(7﹣8)2+(8﹣8)2+(10﹣8)2+(8﹣8)2+(9﹣8)2+(6﹣8)2]=.
    故答案为.
    点评:
    本题考查方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    考点:
    解直角三角形的应用-仰角俯角问题.
    分析:
    根据题意分别在两个直角三角形中求得AF和BF的长后求差即可得到旗杆的高度.
    解答:
    解:根据题意得:EF⊥AC,CD∥FE,
    ∴四边形CDEF是矩形,
    已知底部B的仰角为45°即∠BEF=45°,
    ∴∠EBF=45°,
    ∴CD=EF=FB=38,
    在Rt△AEF中,
    AF=EF•tan50°=38×1.19≈45.22
    ∴AB=AF﹣BF=45.22﹣38≈7.2,
    ∴旗杆的高约为7米.
    故答案为:7.2.
    点评:
    此题考查的知识点是解直角三角形的应用,解题的关键是把实际问题转化为解直角三角形问题,先得到等腰直角三角形,再根据三角函数求解.
    考点:
    等腰梯形的性质;等边三角形的判定与性质;三角形中位线定理.
    专题:
    规律型.
    分析:
    首先求得梯形ABCD的面积,然后证明梯形AnBCnDn∽梯形An﹣1BCn﹣1Dn﹣1,然后根据相似形面积的比等于相似比的平方即可求解.
    解答:
    解:作DE⊥AB于点E.
    在直角△ADE中,DE=AD•sinA=a,AE=AD=a,
    则AB=2AD=2a,S梯形ABCD=(AB+CD)•DE=(2a+a)•a=a2.
    如图2,∵D1、C1是A1C和BC的中点,
    ∴D1C1∥A1B,且C1D1=A1B,
    ∵AA1=CD,AA1∥CD,
    ∴四边形AA1CD是平行四边形,
    ∴AD∥A1C,AD=A1C=a,
    ∴∠A=∠CA1B,
    又∵∠B=∠B,
    ∴∠D=∠A1D1C1,∠DCB=∠D1C1B,
    =,
    ∴梯形A1BC1D1∽梯形ABCD,且相似比是.
    同理,梯形AnBCnDn∽梯形An﹣1BCn﹣1Dn﹣1,相似比是.
    则四边形AnBCnDn的面积为a2.
    故答案是:a2.
    点评:
    本题考查了相似多边形的判定与性质,正确证明梯形AnBCnDn∽梯形An﹣1BCn﹣1Dn﹣1是关键.
    考点:
    分式的化简求值.
    专题:
    计算题.
    分析:
    原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则计算,约分得到最简结果,把a与b的值代入计算即可求出值.
    解答:
    解:原式=÷=•=,
    当a=2+,b=2﹣时,原式===.
    点评:
    此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
    考点:
    条形统计图;用样本估计总体.
    分析:
    (1)首先根据圆周角等于360°,求出的值是多少即可;然后用“视水价格调价涨幅抱无所谓态度”的居民的户数除以它占被调查的居民户数的分率,求出小明调查了多少户居民;最后求出每月每户的用水量在15m3﹣20m3之间的居民的户数,补全图1即可.
    (2)根据中位数和众数的含义分别进行解答即可.
    (3)根据分数乘法的意义,用小明所在小区居民的户数乘以“视调价涨幅采取相应的用水方式改变”的居民户数占被调查的居民户数的分率,求出“视调价涨幅采取相应的用水方式改变”的居民户数有多少即可.
    解答:
    解:(1)n=360﹣30﹣120=210,
    ∵8÷
    =
    =96(户)
    ∴小明调查了96户居民.
    每月每户的用水量在15m3﹣20m3之间的居民的户数是:
    96﹣(15+22+18+16+5)
    =96﹣76
    =20(户).
    (2)96÷2=48(户),15+12=37(户),15+22+20=57(户),
    ∵每月每户的用水量在5m3﹣15m3之间的有37户,每月每户的用水量在5m3﹣20m3之间的有57户,
    ∴把每月每户用水量这组数据从小到大排列后,第48个、第49个数在15﹣20之间,
    ∴第48个、第49个数的平均数也在15﹣20之间,
    ∴每月每户用水量的中位数落在15﹣20之间;
    ∵在这组数据中,10﹣15之间的数出现的次数最多,出现了22次,
    ∴每月每户用水量的众数落在10﹣15之间.
    (3)∵1800×=1050(户),
    ∴“视调价涨幅采取相应的用水方式改变”的居民户数有1050户.
    故答案为:210、96.
    点评:
    (1)此题主要考查了对条形统计图的认识和了解,要善于从条形统计图中获取信息,并能利用获取的信息解决实际问题.
    (2)此题还考查了用样本估计总体,要熟练掌握,解答此题的关键是要明确众数、中位数、平均数、标准差与方差等的含义以及求法.
    考点:
    反比例函数综合题.
    分析:
    (1)先证明四边形AEBD是平行四边形,再由矩形的性质得出DA=DB,即可证出四边形AEBD是菱形;
    (2)连接DE,交AB于F,由菱形的性质得出AB与DE互相垂直平分,求出EF、AF,得出点E的坐标;设经过点E的反比例函数解析式为:y=,把点E坐标代入求出k的值即可.
    解答:
    (1)证明:∵BE∥AC,AE∥OB,
    ∴四边形AEBD是平行四边形,
    ∵四边形OABC是矩形,
    ∴DA=AC,DB=OB,AC=OB,AB=OC=2,
    ∴DA=DB,
    ∴四边形AEBD是菱形;
    (2)解:连接DE,交AB于F,如图所示:
    ∵四边形AEBD是菱形,
    ∴AB与DE互相垂直平分,
    ∵OA=3,OC=2,
    ∴EF=DF=OA=,AF=AB=1,3+=,
    ∴点E坐标为:(,1),
    设经过点E的反比例函数解析式为:y=,
    把点E(,1)代入得:k=,
    ∴经过点E的反比例函数解析式为:y=.
    点评:
    本题是反比例函数综合题目,考查了平行四边形的判定、菱形的判定、矩形的性质、坐标与图形特征以及反比例函数解析式的求法;本题综合性强,有一定难度,特别是(2)中,需要作辅助线求出点E的坐标才能得出结果.
    考点:
    圆周角定理;全等三角形的判定与性质;等边三角形的判定与性质;垂径定理.
    分析:
    (1)利用圆周角定理可得∠BAC=∠CPB,∠ABC=∠APC,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,从而可判断△ABC的形状;
    (2)在PC上截取PD=AP,则△APD是等边三角形,然后证明△APB≌△ADC,证明BP=CD,即可证得;
    (3)过点P作PE⊥AB,垂足为E,过点C作CF⊥AB,垂足为F,把四边形的面积转化为两个三角形的面积进行计算,当点P为的中点时,PE+CF=PC从而得出最大面积.
    解答:
    证明:(1)△ABC是等边三角形.
    证明如下:在⊙O中
    ∵∠BAC与∠CPB是所对的圆周角,∠ABC与∠APC是所对的圆周角,
    ∴∠BAC=∠CPB,∠ABC=∠APC,
    又∵∠APC=∠CPB=60°,
    ∴∠ABC=∠BAC=60°,
    ∴△ABC为等边三角形;
    (2)在PC上截取PD=AP,如图1,
    又∵∠APC=60°,
    ∴△APD是等边三角形,
    ∴AD=AP=PD,∠ADP=60°,即∠ADC=120°.
    又∵∠APB=∠APC+∠BPC=120°,
    ∴∠ADC=∠APB,
    在△APB和△ADC中,

    ∴△APB≌△ADC(AAS),
    ∴BP=CD,
    又∵PD=AP,
    ∴CP=BP+AP;
    (3)当点P为的中点时,四边形APBC的面积最大.
    理由如下,如图2,过点P作PE⊥AB,垂足为E.
    过点C作CF⊥AB,垂足为F.
    ∵S△APE=AB•PE,S△ABC=AB•CF,
    ∴S四边形APBC=AB•(PE+CF),
    当点P为的中点时,PE+CF=PC,PC为⊙O的直径,
    ∴此时四边形APBC的面积最大.
    又∵⊙O的半径为1,
    ∴其内接正三角形的边长AB=,
    ∴S四边形APBC=×2×=.
    点评:
    本题考查了圆周角定理、等边三角形的判定、三角形的面积公式以及三角形的全等的判定与性质,正确作出辅助线,证明△APB≌△ADC是关键.
    考点:
    一次函数的应用;一元二次方程的应用.
    分析:
    (1)根据图象可设y=kx+b,将(40,160),(120,0)代入,得到关于k、b的二元一次方程组,解方程组即可;
    (2)根据每千克的利润×销售量=2400元列出方程,解方程求出销售单价,从而计算销售量,进而求出销售成本,与3000元比较即可得出结论.
    解答:
    解:(1)设y与x的函数关系式为y=kx+b,
    将(40,160),(120,0)代入,
    得,解得,
    所以y与x的函数关系式为y=﹣2x+240(40≤x≤120);
    (2)由题意得(x﹣40)(﹣2x+240)=2400,
    整理得,x2﹣160x+6000=0,
    解得x1=60,x2=100.
    当x=60时,销售单价为60元,销售量为120千克,则成本价为40×120=4800(元),超过了3000元,不合题意,舍去;
    当x=100时,销售单价为100元,销售量为40千克,则成本价为40×40=1600(元),低于3000元,符合题意.
    所以销售单价为100元.
    答:销售单价应定为100元.
    点评:
    本题考查了一次函数的应用以及一元二次方程的应用,利用待定系数法求出y与x的函数关系式是解题的关键.
    考点:
    相似形综合题;切线的性质.
    专题:
    探究型.
    分析:
    (1)如图1,由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;
    (2)如图2,由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;
    (3)如图3,过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=3,根据勾股定理可得DE=4,由题可得DC=DE=4,则有BC=5﹣4=1.易证∠DPC=∠A=∠B.根据AD•BC=AP•BP,就可求出t的值.
    解答:
    解:(1)如图1,
    ∵∠DPC=∠A=∠B=90°,
    ∴∠ADP+∠APD=90°,
    ∠BPC+∠APD=90°,
    ∴∠ADP=∠BPC,
    ∴△ADP∽△BPC,
    ∴=,
    ∴AD•BC=AP•BP;
    (2)结论AD•BC=AP•BP仍然成立.
    理由:如图2,
    ∵∠BPD=∠DPC+∠BPC,∠BPD=∠A+∠ADP,
    ∴∠DPC+∠BPC=∠A+∠ADP.
    ∵∠DPC=∠A=∠B=θ,
    ∴∠BPC=∠ADP,
    ∴△ADP∽△BPC,
    ∴=,
    ∴AD•BC=AP•BP;
    (3)如图3,
    过点D作DE⊥AB于点E.
    ∵AD=BD=5,AB=6,
    ∴AE=BE=3.
    由勾股定理可得DE=4.
    ∵以点D为圆心,DC为半径的圆与AB相切,
    ∴DC=DE=4,
    ∴BC=5﹣4=1.
    又∵AD=BD,
    ∴∠A=∠B,
    ∴∠DPC=∠A=∠B.
    由(1)、(2)的经验可知AD•BC=AP•BP,
    ∴5×1=t(6﹣t),
    解得:t1=1,t2=5,
    ∴t的值为1秒或5秒.
    点评:
    本题是对K型相似模型的探究和应用,考查了相似三角形的判定与性质、切线的性质、等腰三角形的性质、勾股定理、等角的余角相等、三角形外角的性质、解一元二次方程等知识,以及运用已有经验解决问题的能力,渗透了特殊到一般的思想.
    考点:
    二次函数综合题.
    分析:
    (1)利用根据与系数的关系得出α+β=,αβ=﹣2,进而代入求出m的值即可得出答案;
    (2)利用轴对称求最短路线的方法,作点D关于y轴的对称点D′,点E关于x轴的对称点E′,得出四边形DNME的周长最小为:D′E′+DE,进而利用勾股定理求出即可;
    (3)利用平行四边形的判定与性质结合P点纵坐标为±4,进而分别求出即可.
    解答:
    解:(1)由题意可得:α,β是方程﹣mx2+4x+2m=0的两根,由根与系数的关系可得,
    α+β=,αβ=﹣2,
    ∵=﹣2,
    ∴=﹣2,即=﹣2,
    解得:m=1,
    故抛物线解析式为:y=﹣x2+4x+2;
    (2)存在x轴上的点M,y轴上的点N,使得四边形DNME的周长最小,
    ∵y=﹣x2+4x+2=﹣(x﹣2)2+6,
    ∴抛物线的对称轴l为x=2,顶点D的坐标为:(2,6),
    又∵抛物线与y轴交点C的坐标为:(0,2),点E与点C关于l对称,
    ∴E点坐标为:(4,2),
    作点D关于y轴的对称点D′,点E关于x轴的对称点E′,
    则D′的坐标为;(﹣2,6),E′坐标为:(4,﹣2),
    连接D′E′,交x轴于M,交y轴于N,
    此时,四边形DNME的周长最小为:D′E′+DE,如图1所示:
    延长E′E,′D交于一点F,在Rt△D′E′F中,D′F=6,E′F=8,
    则D′E′===10,
    设对称轴l与CE交于点G,在Rt△DGE中,DG=4,EG=2,
    ∴DE===2,
    ∴四边形DNME的周长最小值为:10+2;
    (3)如图2,P为抛物线上的点,过点P作PH⊥x轴,垂足为H,
    若以点D、E、P、Q为顶点的四边形为平行四边形,则△PHQ≌△DGE,
    ∴PH=DG=4,
    ∴|y|=4,
    ∴当y=4时,﹣x2+4x+2=4,
    解得:x1=2+,x2=2﹣,
    当y=﹣4时,﹣x2+4x+2=﹣4,
    解得:x3=2+,x4=2﹣,
    故P点的坐标为;(2﹣,4),(2+,4),(2﹣,﹣4),(2+,﹣4).
    点评:
    此题主要考查了平行四边形的性质以及勾股定理、利用轴对称求最短路线等知识,利用数形结合以及分类讨论得出P点坐标是解题关键.

    相关试卷

    山东省德州市中考数学试卷(含解析版):

    这是一份山东省德州市中考数学试卷(含解析版),共25页。

    山东省德州市中考数学试卷(含解析版):

    这是一份山东省德州市中考数学试卷(含解析版),共31页。

    山东省德州市中考数学试卷(含解析版):

    这是一份山东省德州市中考数学试卷(含解析版),共33页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map