所属成套资源:中考数学一轮复习考点题型归纳与分层练习(2份,原卷版+解析版)
中考数学一轮复习考点题型归纳与分层练习专题33 概率(2份,原卷版+解析版)
展开
这是一份中考数学一轮复习考点题型归纳与分层练习专题33 概率(2份,原卷版+解析版),文件包含中考数学一轮复习考点题型归纳与分层练习专题33概率原卷版doc、中考数学一轮复习考点题型归纳与分层练习专题33概率解析版doc等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。
技巧1:概率应用的四种求法
技巧2:利用概率判断游戏规则的公平性
【题型】一、判断事件发生可能性的大小
【题型】二、简单概率计算
【题型】三、用列举法求概率
【题型】四、判断游戏公平性
【题型】五、用频率估计概率
【考纲要求】
1.了解事件的有关概念及分类.
2.理解概率的概念,并会用列表、画树状图法求简单事件发生的概率.
3.学会用频率估计概率,并会用概率解决实际问题.
【考点总结】一、事件的有关概念
1.必然事件:
在现实生活中一定会发生的事件称为必然事件.
2.不可能事件:
在现实生活中一定不会发生的事件称为不可能事件.
3.不确定事件:
在现实生活中,有可能发生,也有可能不发生的事件称为不确定事件.
4.分类:事件eq \b\lc\{\rc\ (\a\vs4\al\c1(确定事件\b\lc\{\rc\ (\a\vs4\al\c1(必然事件,不可能事件)),不确定事件))
【考点总结】二、用列举法求概率
1.在不确定事件中,一件事发生的可能性大小叫做这个事件的概率.
2.适用条件:
(1)可能出现的结果为有限多个;
(2)各种结果发生的可能性相等.
3.求法:
(1)利用列表或画树状图的方法列举出所有机会均等的结果;
(2)弄清我们关注的是哪个或哪些结果;
(3)求出关注的结果数与所有等可能出现的结果数的比值,即关注事件的概率.
【考点总结】三、利用频率估计概率
1.适用条件:
当试验的结果不是有限个或各种结果发生的可能性不相等.
2.方法:
进行大量重复试验,当事件发生的频率越来越靠近一个常数时,该常数就可认为是这个事件发生的概率.
【考点总结】四、概率的应用
概率是和实际结合非常紧密的数学知识,可以对生活中的某些现象作出评判,如解释摸奖,配紫色,评判游戏活动的公平性,数学竞赛获奖的可能性等等,还可以对某些事件作出决策.
【技巧归纳】
技巧1:概率应用的四种求法
【类型】一:用公式法求概率
1.一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.
(1)求从袋中摸出一个球是黄球的概率;
(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个球是黄球的概率不小于eq \f(1,3),问至少取出了多少个黑球?
【类型】二:用列表法求概率
2.某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成如下不完整的统计图表:
请根据以上信息回答下列问题:
(第2题)
(1)分别求出统计表中的x,y的值;
(2)估计该校九年级400名学生中为“优秀”档次的人数;
(3)从被调查的“优秀”档次的学生中随机抽取2名学生介绍读书体会,请用列表或画树形图的方法求抽取的2名学生中有1名阅读本数为9的概率.
【类型】三:用画树形图法求概率
3.体育课上,小明、小强、小华三人在踢足球,足球从一人传到另一人就记为踢一次.
(1)如果从小强开始踢,经过两次踢球后,足球踢到了小华处的概率是多少?
(2)如果踢三次后,球踢到了小明处的可能性最小,应从谁开始踢?请说明理由.
【类型】四:用频率估算法求概率
4.一只不透明的袋子中装有4个球,分别标有数字2,3,4,x,这些球除数字外都相同.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这两个球上数字之和.记录后都将球放回袋中搅匀,进行重复试验.试验数据如下表:
解答下列问题:
(1)如果试验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,试估计出现“和为7”的概率;
(2)根据(1),若x是不等于2,3,4的自然数,试求x的值.
技巧2:利用概率判断游戏规则的公平性
【类型】一:利用概率判断摸球游戏的公平性
1.在一个不透明的口袋里装有分别标有数字1,2,3,4的四个球,除数字不同外,球没有任何区别,每次试验前先搅拌均匀.
(1)若从中任取一球,球上的数字为偶数的概率为多少?
(2)若从中任取一球(不放回),再从中任取一球,请用画树形图或列表格的方法求出两个球上的数字之和为偶数的概率.
(3)若设计一种游戏方案:从中任取两球,两个球上的数字之差的绝对值为1时甲胜,否则乙胜,请问这种游戏方案对甲、乙双方公平吗?请说明理由.
【类型】二:利用概率判断转盘游戏的公平性
2.如图是一个转盘,转盘被平均分成4等份,即被分成4个大小相等的扇形,4个扇形分别标有数字1,2,3,4,指针的位置固定,转动转盘后任其自由停止,每次指针落在每一扇形的机会均等(若指针恰好落在分界线上则重转).【导学号:89274041】
(1)图中标有“1”的扇形至少绕圆心旋转________度能与标有“4”的扇形的起始位置重合;
(2)现有一本故事书,姐妹俩商定通过转盘游戏定输赢(赢的一方先看),游戏规则是:姐妹俩各转动一次转盘,两次转动后,若指针所指扇形上的数字之积为偶数,则姐姐赢;若指针所指扇形上的数字之积为奇数,则妹妹赢.这个游戏规则对双方公平吗?请利用树形图或列表法说明理由.
(第2题)
【类型】三:利用概率判断统计事件的公平性
3.近年来,我国持续的大面积的雾霾天气让环境和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在学生中作了一次抽样调查,调查结果共分为四个等级;A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.
(第3题)
对雾霾天气了解程度的统计表:
请结合统计图表,回答下列问题:
(1)本次参与调查的学生共有________人,n=________;
(2)扇形统计图中D部分扇形所对应的圆心角是________度;
(3)请补全条形统计图;
(4)根据调查结果,学校准备开展关于雾霾的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一个人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去,否则小刚去.请用树形图或列表法说明这个游戏规则是否公平.
【题型讲解】
【题型】一、判断事件发生可能性的大小
例1、下列事件是必然事件的是( )
A.任意一个五边形的外角和为540°
B.抛掷一枚均匀的硬币100次,正面朝上的次数为50次
C.13个人参加一个集会,他们中至少有两个人的出生月份是相同的
D.太阳从西方升起
例2、下列事件中是不可能事件的是( )
A.守株待兔B.瓮中捉鳖C.水中捞月D.百步穿杨
【题型】二、简单概率计算
例3、一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
例4、四张背面完全相同的卡片,正面分别印有等腰三角形、圆、平行四边形、正六边形,现在把它们的正面向下,随机的摆放在桌面上,从中任意抽出一张,则抽到的卡片正面是中心对称图形的概率是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D.1
例5、已知电流在一定时间段内正常通过电子元件“”的概率是0.5;则在一定时间段内,由该元件组成的图示电路A、B之间,电流能够正常通过的概率是( )
A.0.75B.0.625C.0.5D.0.25
例6、现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
【题型】三、用列举法求概率
例7、不透明的袋子中装有两个小球,上面分别写着“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
例8、将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
例9、现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同,从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
【题型】四、判断游戏公平性
例10、小伟和小梅两位同学玩掷骰子的游戏,两人各掷一次均匀的骰子,以掷出的点数之差的绝对值判断输赢.若所得数值等于 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则小伟胜:若所得数值等于 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则小梅胜
(1)请利用表格分别求出小伟、小梅获胜的概率
(2)判断上述游戏是否公平.如果公平,请说明理由;如果不公平,请利用上表修改游戏规则,以确保游戏的公平性
【题型】五、用频率估计概率
例11、为庆祝建党99周年,某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作: SKIPIF 1 < 0 、“北斗卫星”: SKIPIF 1 < 0 、“ SKIPIF 1 < 0 时代”; SKIPIF 1 < 0 、“智轨快运系统”; SKIPIF 1 < 0 、“东风快递”; SKIPIF 1 < 0 、“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“ SKIPIF 1 < 0 时代”的频率是( )
A.0.25B.0.3C.25D.30
例12、为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.
根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于 SKIPIF 1 < 0 的概率是( )
A.0.32B.0.55C.0.68D.0.87
例13、如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为 SKIPIF 1 < 0 ,宽为 SKIPIF 1 < 0 的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
概率(达标训练)
一、单选题
1.下列所给的事件中,是必然事件的是( )
A.某校的300名学生中,至少有2名学生的生日是同一天.
B.正方形的对角线互相垂直
C.某抽奖活动的中奖概率是 SKIPIF 1 < 0 ,那么连续抽10次,必然会中奖.
D.2023年的元旦顺德会下雪.
2.县气象站天气预报称,明天千岛湖镇的降水概率为 SKIPIF 1 < 0 ,下列理解正确的是( )
A.明天千岛湖镇下雨的可能性较大
B.明天千岛湖镇有 SKIPIF 1 < 0 的地方会下雨
C.明天千岛湖镇全天有 SKIPIF 1 < 0 的时间会下雨
D.明天千岛湖镇一定会下雨
3.下列成语所描述的事件属于不可能事件的是( )
A.守株待兔B.水中捞月C.水滴石穿D.百发百中
4.如图,电路图上有4个开关A、B、C、D和1个小灯泡,同时闭合开关A、B或同时闭合开关C、D都可以使小灯泡发光,下列操作中,“小灯泡发光”这个事件是随机事件的是( )
A.只闭合4个开关B.只闭合3个开关C.只闭合2个开关D.闭合1个开关
5.袋子中装有 SKIPIF 1 < 0 个红球、 SKIPIF 1 < 0 个绿球,从袋子中随机摸出一个球,是绿球的概率为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
6.如图,一个可以自由转动的转盘被等分成 SKIPIF 1 < 0 个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向红色区域的概率是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
7.某校举行春季运动会,需要在初一年级选取一名志愿者.初一(1)班、初一(2)班、初一(3)班各有 SKIPIF 1 < 0 名同学报名参加.现从这 SKIPIF 1 < 0 名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一(3)班同学的概率是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
8.宋代程颢的《秋月》有四句古诗如下:
①空水澄鲜一色秋;②白云红叶两悠悠;
③清溪流过碧山头;④隔断红尘三十里
这四句古诗的顺序被打乱了,敏敏想把这四句古诗调整为正确位置,则她第一次就调整正确的可能性是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
9.下列事件是随机事件的是( )
A.打开电视,正在播放《中国机长》
B.白发三千丈,缘愁似个长
C.离离原上草,一岁一枯荣
D.钝角三角形的内角和大于 SKIPIF 1 < 0
二、填空题
10.某射击运动员在同一条件下的射击成绩记录如下:
根据频率的稳定性,估计这名运动员射击一次时“中九环以上”的概率约是_______.(精确到0.01)
11.如图,若随机闭合开关 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 中的两个,则能让两灯泡同时发光的概率为______
三、解答题
12.某校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了 SKIPIF 1 < 0 米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如图不完整的统计图.
(1)根据给出的信息,补全两幅统计图;
(2)该校九年级有 SKIPIF 1 < 0 名男生,请估计成绩达到良好及以上等级的有多少名?
(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会 SKIPIF 1 < 0 米比赛.预赛分别为 SKIPIF 1 < 0 三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?
13.某学校准备组织学生参加唱歌、舞蹈、书法、朗诵活动,为了解学生的参与情况,该校随机抽取了部分学生进行“你愿意参加哪一项活动”(必选且只选一种)的问卷调查.根据调查结果绘制了两幅不完整的统计图,请根据图中信息,解答下列问题:
(1)本次抽样调查的总人数为______,扇形统计图中“舞蹈”对应的圆心角的度数为______.
(2)若该校有1400名学生,估计选择参加“书法”的有多少人?
(3)学校准备从推荐的4位同学(两男两女)中随机选取两人当正式活动的主持人,利用画树状图法或列表法求选取的两人恰为一男一女的概率.
概率(提升测评)
一、单选题
1.将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
2.活动课上,小林、小军、小强3位同学和其他6位同学一起进行3人制篮球赛,他们将9人随机抽签分成三组,则小林、小军、小强三人恰好分在3个不同组的概率是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
3.如图,点D在 SKIPIF 1 < 0 的边 SKIPIF 1 < 0 上,连接 SKIPIF 1 < 0 ,点P的位置如图所示,在图中随机选择一个三角形,则点P在选择的三角形内部的概率是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D.1
4.现有3包同一品牌的饼干,其中2包已过期,随机抽取2包,2包都过期的概率是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
5.如图,正方形ABCD内接于⊙O,若随意抛出一粒石子在这个圆面上,则石子落在正方形ABCD内概率是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
6.孔明给弟弟买了一些糖果,放到一个不透明的袋子里,这些糖果除了口味和外包装的颜色外其余都相同,袋子里各种口味糖果的数量统计如图所示,他让弟弟从袋子里随机摸出一颗糖果.则弟弟恰好摸到苹果味糖果的概率是( ).
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
7.在一个不透明的口袋中装有 SKIPIF 1 < 0 个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在 SKIPIF 1 < 0 附近,则口袋中白球可能有( )
A.1 SKIPIF 1 < 0 个B.1 SKIPIF 1 < 0 个C.1 SKIPIF 1 < 0 个D.1 SKIPIF 1 < 0 个
8.4件外观相同的产品中只有1件不合格,现从中一次抽取2件进行检测,抽到的两件产品中有一件产品合格而另一件产品不合格的概率是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
9.如图,电路连接完好,且各元件工作正常.随机闭合开关 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 中的两个,能让两个小灯泡同时发光的概率为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
10.有两个可以自由转动的转盘,每个转盘被分成如图所示的几个扇形,游戏者同时转动两个转盘,如果一个转盘转出了红色,另一个转盘转出了蓝色,游戏者就配成了紫色,下列说法正确的是( )
A.两个转盘转出蓝色的概率一样大
B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了
C.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同
D.游戏者配成紫色的概率为 SKIPIF 1 < 0
二、填空题
11.现有 SKIPIF 1 < 0 张正面分别标有数字 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 的不透明卡片,它们除了数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,将该卡片上的数字记为 SKIPIF 1 < 0 ,放回后再洗匀并随机抽取一张,将该卡片上的数字记为 SKIPIF 1 < 0 ,则满足方程 SKIPIF 1 < 0 的解是负数的概率为________.
12.如图,A、B是 SKIPIF 1 < 0 正方形网格中的两个格点,在格点上任意放置点C,恰好能使 SKIPIF 1 < 0 的面积为1的概率是______.
三、解答题
13.为增强学生爱国意识,激发爱国情怀,某校9月开展了“喜迎二十大、永远跟党走、奋进新征程”主题教育活动,活动方式有:A.主题征文,B.书法绘画,C.红歌传唱,D.经典诵读.为了解最受学生喜爱的活动方式,现随机抽取若干名学生进行调查,并将调查结果绘制成如下两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)参与此次抽样调查的学生人数是_______,扇形统计图中A部分圆心角的度数是_______;
(2)学校从1班,2班,3班,4班中随机选取两个班参加“红歌传唱”的活动,求恰好选中2班和3班的概率.
14.某校为落实“双减”工作,增强课后服务的吸引力,充分用好课后服务时间,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组): SKIPIF 1 < 0 .音乐; SKIPIF 1 < 0 .体育; SKIPIF 1 < 0 .美术; SKIPIF 1 < 0 .阅读; SKIPIF 1 < 0 .人工智能.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.
根据图中信息,解答下列问题:
(1)①此次调查一共随机抽取了______名学生;
②补全条形统计图(要求在条形图上方注明人数);
③扇形统计图中圆心角 SKIPIF 1 < 0 ______度;
(2)若该校有2800名学生,估计该校参加 SKIPIF 1 < 0 组(阅读)的学生人数;
(3)学校计划从 SKIPIF 1 < 0 组(人工智能)的甲、乙、丙、丁四位学生中随机抽取两人参加市青少年机器人竞赛,请用树状图法或列表法求出恰好抽中甲、乙两人的概率.
阅读本数
n/本
1
2
3
4
5
6
7
8
9
人数/人
1
2
6
7
12
x
7
y
1
摸球总
次数
10
20
30
60
90
120
180
240
330
450
“和为7”出
现的频数
1
9
14
24
26
37
58
82
109
150
“和为7”出
现的频率
0.10
0.45
0.47
0.40
0.29
0.31
0.32
0.34
0.33
0.33
对雾霾天气的了解程度
百分比
A.非常了解
5%
B.比较了解
15%
C.基本了解
45%
D.不了解
n
身高 SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
人数
60
260
550
130
射击次数
20
80
100
200
400
800
1000
射中九环以上次数
18
68
82
166
330
664
832
射中九环以上的频率
0.90
0.85
0.82
0.83
0.825
0.83
0.832
相关试卷
这是一份中考数学一轮复习考点题型归纳与分层练习专题29 圆的有关概念(2份,原卷版+解析版),文件包含中考数学一轮复习考点题型归纳与分层练习专题29圆的有关概念原卷版doc、中考数学一轮复习考点题型归纳与分层练习专题29圆的有关概念解析版doc等2份试卷配套教学资源,其中试卷共76页, 欢迎下载使用。
这是一份中考数学一轮复习考点题型归纳与分层练习专题28 投影与视图(2份,原卷版+解析版),文件包含中考数学一轮复习考点题型归纳与分层练习专题28投影与视图原卷版doc、中考数学一轮复习考点题型归纳与分层练习专题28投影与视图解析版doc等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。
这是一份中考数学一轮复习考点题型归纳与分层练习专题27 轴对称(2份,原卷版+解析版),文件包含中考数学一轮复习考点题型归纳与分层练习专题27轴对称原卷版doc、中考数学一轮复习考点题型归纳与分层练习专题27轴对称解析版doc等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。