终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    考点15 函数模型的应用(3种核心题型+基础保分练+综合提升练+拓展冲刺练)-2025高考数学一轮精讲讲练(新高考版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      考点15函数模型的应用(3种核心题型+基础保分练+综合提升练+拓展冲刺练)原卷版.docx
    • 解析
      考点15函数模型的应用(3种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版.docx
    考点15函数模型的应用(3种核心题型+基础保分练+综合提升练+拓展冲刺练)原卷版第1页
    考点15函数模型的应用(3种核心题型+基础保分练+综合提升练+拓展冲刺练)原卷版第2页
    考点15函数模型的应用(3种核心题型+基础保分练+综合提升练+拓展冲刺练)原卷版第3页
    考点15函数模型的应用(3种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版第1页
    考点15函数模型的应用(3种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版第2页
    考点15函数模型的应用(3种核心题型+基础保分练+综合提升练+拓展冲刺练)解析版第3页
    还剩19页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    考点15 函数模型的应用(3种核心题型+基础保分练+综合提升练+拓展冲刺练)-2025高考数学一轮精讲讲练(新高考版)

    展开

    这是一份考点15 函数模型的应用(3种核心题型+基础保分练+综合提升练+拓展冲刺练)-2025高考数学一轮精讲讲练(新高考版),文件包含考点15函数模型的应用3种核心题型+基础保分练+综合提升练+拓展冲刺练原卷版docx、考点15函数模型的应用3种核心题型+基础保分练+综合提升练+拓展冲刺练解析版docx等2份试卷配套教学资源,其中试卷共71页, 欢迎下载使用。
    1.了解指数函数、对数函数与一次函数增长速度的差异.
    2.理解“指数爆炸”“对数增长”“直线上升”等术语的含义
    3.能选择合适的函数模型刻画现实问题的变化规律,了解函数模型在社会生活中的广泛应用
    【知识点】
    1.三种函数模型的性质
    2.常见的函数模型
    【核心题型】
    题型一 用函数图象刻画变化过程
    判断函数图象与实际问题变化过程相吻合的两种方法
    (1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选择函数图象.
    (2)验证法:根据实际问题中两变量的变化快慢等特点,结合函数图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.
    【例题1】(2023·山西朔州·模拟预测)为研究每平方米平均建筑费用与楼层数的关系,某开发商收集了一栋住宅楼在建筑过程中,建筑费用的相关信息,将总楼层数与每平米平均建筑成本(单位:万元)的数据整理成如图所示的散点图:
    则下面四个回归方程类型中最适宜作为每平米平均建筑费用和楼层数的回归方程类型的是( )
    A.B.
    C.D.
    【变式1】(2023·江西南昌·二模)为了预防某种病毒,某学校需要通过喷洒药物对教室进行全面消毒.出于对学生身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25毫克/立方米时,学生方可进入教室.已知从喷洒药物开始,教室内部的药物浓度y(毫克/立方米)与时间t(分钟)之间的函数关系为,函数的图像如图所示.如果早上7:30就有学生进入教室,那么开始喷洒药物的时间最迟是( )
    A.7:00B.6:40C.6:30D.6:00
    【变式2】(2023·四川南充·三模)血药浓度是指药物吸收后在血浆内的总浓度,当血药浓度介于最低有效浓度和最低中毒浓度之间时药物发挥作用.某种药物服用1单位后,体内血药浓度变化情况如图所示(服用药物时间对应t时),则下列说法中不正确的是( )
    A.首次服药1单位后30分钟时,药物已经在发挥疗效
    B.若每次服药1单位,首次服药1小时药物浓度达到峰值
    C.若首次服药1单位,3小时后再次服药1单位,一定不会发生药物中毒
    D.每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用
    【变式3】(23-24高三下·江苏镇江·开学考试)函数的图象如图所示,则( )
    A.B.
    C.D.
    题型二 已知函数模型的实际问题
    已知函数模型解决实际问题的关键
    (1)认清所给函数模型,弄清哪些量为待定系数.
    (2)根据已知利用待定系数法,确定模型中的待定系数.
    (3)利用该函数模型,借助函数的性质、导数等求解实际问题,并进行检验.
    【例题1】.(2024高三·全国·专题练习)中国茶文化博大精深,茶水的口感与茶叶类型和水的温度有关,经验表明,某种绿茶用的开水泡制,再等茶水温度降至时饮用,可以产生最佳口感,如果茶水原来的温度是,经过一定时间后的温度T(单位:)可由公式求得,其中表示室温,k是一个随着物体与空气的接触状况而定的正常数.现有一杯的绿茶放在室温为的房间中,如果茶温降到需要 ,那么在室温下,用的开水泡制,刚泡好的茶水要达到最佳饮用口感,大约需要放置( )(参考数据:)
    A.B.C.D.
    【变式1】(2024·四川德阳·三模)如今我国物流行业蓬勃发展,极大地促进了社会经济发展和资源整合.已知某类果蔬的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系.(a,b.为常数),若该果蔬在7℃的保鲜时间为288小时,在21℃ 的保鲜时间为32小时,且该果蔬所需物流时间为4天,则物流过程中果蔬的储藏温度(假设物流过程中恒温)最高不能超过( )
    A.14℃B.15℃C.13℃D.16℃
    【变式2】(2023·贵州铜仁·模拟预测)牛顿曾经提出了在常温环境下的温度冷却模型(t为时间,单位:分钟,为环境温度,为物体初始温度,为冷却后温度),假设一杯开水温度,环境温度,常数,大约经过 分钟水温降为30℃(参考数据:).
    【变式3】(2024高三·全国·专题练习)环保部门为了研究某池塘里某种植物生长面积S(单位:)与时间t(单位:月)之间的关系,通过观察建立了函数模型,且.已知第一个月该植物的生长面积为,第三个月该植物的生长面积为.
    (1)求证:若,则;
    (2)若该植物的生长面积达到100 以上,则至少要经过多少个月?
    题型三 构造函数模型的实际问题
    构建函数模型解决实际问题的步骤
    (1)建模:抽象出实际问题的数学模型;
    (2)推理、演算:对数学模型进行逻辑推理或数学运算,得到问题在数学意义上的解;
    (3)评价、解释:对求得的数学结果进行深入讨论,作出评价、解释,然后返回到原来的实际问题中去,得到实际问题的解.
    【例题1】(23-24高三上·江苏南通·期末)某中学开展劳动实习,学生制作一个矩形框架的工艺品.要求将一个边长分别为10cm和20cm的矩形零件的四个顶点分别焊接在矩形框架的四条边上,则矩形框架周长的最大值为( )
    A.B.C.D.
    【变式1】(2023·陕西商洛·模拟预测)净水机通过分级过滤的方式使自来水逐步达到纯净水的标准,其工作原理中有多次的棉滤芯过滤,其中第一级过滤一般由孔径为5微米的棉滤芯(聚丙烯熔喷滤芯)构成,其结构是多层式,主要用于去除铁锈、泥沙、悬浮物等各种大颗粒杂质,假设每一层棉滤芯可以过滤掉三分之一的大颗粒杂质,若过滤前水中大颗粒杂质含量为80mg/L,现要满足过滤后水中大颗粒杂质含量不超过2mg/L,则棉滤芯的层数最少为(参考数据:,)( )
    A.9B.8C.7D.6
    【变式2】2023·上海闵行·三模)珠穆朗玛峰高达8848.86米,但即使你拥有良好的视力,你也无法在上海看到它.一个观察者距离珠穆朗玛峰多远,才能在底面上看到它呢?为了能够通过几何方法解决这个问题,需要利用简单的几何模型表示这个问题情境,在此过程中,有下列假设:①珠穆朗玛峰的形状为等腰梯形;②地球的形状是一个球体;③太阳光线沿直线传播;④没有事物可以阻碍人们看到珠穆朗玛峰的视线.你认为最不重要的一个假设是 .
    【变式3】(23-24高三上·福建宁德·期中)为了减少碳排放,某企业采用新工艺,将生产中产生的二氧化碳转化为一种化工产品.已知该企业每月的处理量最少为30吨,最多为400吨.月处理成本(元)与月处理量(吨)之间的函数关系近似地表示为.
    (1)该企业每月处理量为多少吨时,才能使月处理成本最低?月处理成本最低是多少元?
    (2)该企业每月处理量为多少吨时,才能使每吨的平均处理成本最低?每吨的平均处理成本最低是多少元?
    【课后强化】
    基础保分练
    一、单选题
    1.(2024·江苏·一模)德国天文学家约翰尼斯·开普勒根据丹麦天文学家第谷·布拉赫等人的观测资料和星表,通过本人的观测和分析后,于1618年在《宇宙和谐论》中提出了行星运动第三定律——绕以太阳为焦点的椭圆轨道运行的所有行星,其椭圆轨道的长半轴长a与公转周期T有如下关系:,其中M为太阳质量,G为引力常量.已知火星的公转周期约为水星的8倍,则火星的椭圆轨道的长半轴长约为水星的( )
    A.2倍B.4倍C.6倍D.8倍
    2.(2024·广东韶关·二模)在工程中估算平整一块矩形场地的工程量W(单位:平方米)的计算公式是,在不测量长和宽的情况下,若只知道这块矩形场地的面积是10000平方米,每平方米收费1元,请估算平整完这块场地所需的最少费用(单位:元)是( )
    A.10000B.10480C.10816D.10818
    3.(2024·上海奉贤·二模)已知函数,其中,,其中,则图象如图所示的函数可能是( ).
    A.B.
    C.D.
    4.(2024·河南新乡·二模)某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P(单位:)与时间t(单位:h)之间的关系式为,其中是正的常数,若在前消除了的污染物,则常数k所在的区间为( )
    A.B.C.D.
    5.(2024·内蒙古赤峰·一模)在下列四个图形中,点P从点O出发,按逆时针方向沿周长为l的图形运动一周,O、P两点连线的距离y与点P走过的路程x的函数关系如图,那么点P所走的图形是( )
    A.B.
    C.D.
    二、多选题
    6.(2024·全国·模拟预测)某地下车库在排气扇发生故障的情况下测得空气中一氧化碳含量达到了危险状态,经抢修排气扇恢复正常,排气4分钟后测得车库内的一氧化碳浓度为,继续排气4分钟后又测得浓度为.由检验知该地下车库一氧化碳浓度(单位:)与排气时间(单位:分钟)之间满足函数关系(为常数,是自然对数的底数).若空气中一氧化碳浓度不高于,人就可以安全进入车库了,则下列说法正确的是( )
    A.
    B.
    C.排气12分钟后浓度为
    D.排气32分钟后,人可以安全进入车库
    7.(2023·广东广州·三模)已知函数的图象与直线有三个交点,记三个交点的横坐标分别为,且,则下列说法正确的是( )
    A.存在实数,使得
    B.
    C.
    D.为定值
    三、填空题
    8.(22-23高三下·上海闵行·阶段练习)一般的数学建模包含如下活动过程:①建立模型;②实际情境;③提出问题;④求解模型;⑤实际结果;⑥检验结果,请写出正确的序号顺序 .
    9.(2024·上海长宁·二模)甲、乙、丙三辆出租车2023年运营的相关数据如下表:
    出租车空驶率;依据以述数据,小明建立了求解三辆车的空驶率的模型,并求得甲、乙、丙的空驶率分别为,则
    (精确到0.01)
    四、解答题
    10.(2024·浙江温州·二模)红旗淀粉厂2024年之前只生产食品淀粉,下表为年投入资金(万元)与年收益(万元)的8组数据:
    (1)用模拟生产食品淀粉年收益与年投入资金的关系,求出回归方程;
    (2)为响应国家“加快调整产业结构”的号召,该企业又自主研发出一种药用淀粉,预计其收益为投入的.2024年该企业计划投入200万元用于生产两种淀粉,求年收益的最大值.(精确到0.1万元)
    附:①回归直线中斜率和截距的最小二乘估计公式分别为:,


    11.(2024·江西上饶·一模)机动车辆保险即汽车保险(简称车险),是指对机动车辆由于自然灾害或意外事故所造成的人身伤亡或财产损失负赔偿责任的一种商业保险.机动车辆保险一般包括交强险和商业险两部分,其中商业险包括基本险和附加险.经验表明商业险保费(单位:元)由过去三年的出险次数决定了下一年的保费倍率,上饶市某机动车辆保险公司对于购买保险满三年的汽车按如下表格计算商业险费用.(假设每年出险次数2次及以上按2次计算)
    (1)汽车的基准保费由车的价格决定,假定王先生的汽车基准保费为3000元,且过去8年都没有出险,近期发生轻微事故,王先生到汽车维修店询价得知维修费为1000元,理赔人员根据王先生过去一直安全行车的习惯,建议王先生出险理赔,王先生是否该接受建议?(假设接下来三年王先生汽车基准保费不变,且都不出险)
    (2)张先生有多年驾车经验,用他过去的驾车出险频率估计概率,得知平均每年不出险的概率为0.8,出一次险的概率为0.1,出两次险的概率为0.1(两次及以上按两次算).张先生近期买了一辆新车,商业险基准保费为3000元(假设基准保费不变),求张先生新车刚满三年时的商业险保费分布列及期望.
    综合提升练
    一、单选题
    1.(2023·河南郑州·模拟预测)水雾喷头布置的基本原则是:保护对象的水雾喷头数量应根据设计喷雾强度、保护面积和水雾喷头特性,按水雾喷头流量q(单位:L/min)计算公式为和保护对象的水雾喷头数量N计算公式为计算确定,其中P为水雾喷头的工作压力(单位:MPa),K为水雾喷头的流量系数(其值由喷头制造商提供),S为保护对象的保护面积,W为保护对象的设计喷雾强度(单位:).水雾喷头的布置应使水雾直接喷射和完全覆盖保护对象,如不能满足要求时应增加水雾喷头的数量.当水雾喷头的工作压力P为0.35MPa,水雾喷头的流量系数K为24.96,保护对象的保护面积S为,保护对象的设计喷雾强度W为时,保护对象的水雾喷头的数量N约为(参考数据:)( )
    A.4个B.5个C.6个D.7个
    2.(23-24高三上·河南·阶段练习)设某批产品的产量为(单位:万件),总成本(单位:万元),销售单价(单位:元/件).若该批产品全部售出,则总利润(总利润销售收入-总成本)最大时的产量为( )
    A.7万件B.8万件C.9万件D.10万件
    3.(2024·北京丰台·一模)按国际标准,复印纸幅面规格分为系列和系列,其中系列以,,…等来标记纸张的幅面规格,具体规格标准为:
    ①规格纸张的幅宽和幅长的比例关系为;
    ②将()纸张平行幅宽方向裁开成两等份,便成为规格纸张(如图).

    某班级进行社会实践活动汇报,要用规格纸张裁剪其他规格纸张.共需规格纸张40张,规格纸张10张,规格纸张5张.为满足上述要求,至少提供规格纸张的张数为( )
    A.6B.7C.8D.9
    4.(2024·河北沧州·模拟预测)某企业的废水治理小组积极探索改良工艺,致力于使排放的废水中含有的污染物数量逐渐减少.已知改良工艺前排放的废水中含有的污染物数量为,首次改良工艺后排放的废水中含有的污染物数量为,第n次改良工艺后排放的废水中含有的污染物数量满足函数模型(,),其中为改良工艺前排放的废水中含有的污染物数量,为首次改良工艺后排放的废水中含有的污染物数量,n为改良工艺的次数.假设废水中含有的污染物数量不超过时符合废水排放标准,若该企业排放的废水符合排放标准,则改良工艺的次数最少为( )(参考数据:,)
    A.12B.13C.14D.15
    5.(2024·北京怀柔·模拟预测)“绿水青山就是金山银山”的理念已经提出18年,我国城乡深化河道生态环境治理,科学治污.现有某乡村一条污染河道的蓄水量为v立方米,每天的进出水量为k立方米,已知污染源以每天r个单位污染河水,某一时段t(单位:天)河水污染质量指数(每立方米河水所含的污染物)满足(为初始质量指数),经测算,河道蓄水量是每天进出水量的50倍.若从现在开始停止污染源,要使河水的污染水平下降到初始时的,需要的时间大约是(参考数据:,)( )
    A.1个月B.3个月C.半年D.1年
    6.(2024·北京西城·一模)德国心理学家艾·宾浩斯研究发现,人类大脑对事物的遗忘是有规律的,他依据实验数据绘制出“遗忘曲线”.“遗忘曲线”中记忆率随时间(小时)变化的趋势可由函数近似描述,则记忆率为时经过的时间约为( )(参考数据:)
    A.2小时B.0.8小时C.0.5小时D.0.2小时
    7.(2023·湖北武汉·模拟预测)一个半球体状的雪堆,假设在融化过程中雪堆始终保持半球体状,其体积变化的速率与半球面面积成正比,已知半径为的雪堆在开始融化的3小时,融化了其体积的,则该雪堆全部融化需要( )小时
    A.B.4C.5D.6
    8.(2024·陕西商洛·三模)近年来商洛为了打造康养之都,引进了先进的污水、雨水过滤系统.已知过滤过程中废水的污染物数量与时间(小时)的关系为(为最初的污染物数量).如果前3小时消除了的污染物,那么污染物消除至最初的还需要( )
    A.2.6小时B.6小时C.3小时D.4小时
    二、多选题
    9.(2024·重庆·模拟预测)放射性物质在衰变中产生辐射污染逐步引起了人们的关注,已知放射性物质数量随时间的衰变公式,表示物质的初始数量,是一个具有时间量纲的数,研究放射性物质常用到半衰期,半衰期指的是放射性物质数量从初始数量到衰变成一半所需的时间,已知,右表给出了铀的三种同位素τ的取值:若铀234、铀235和铀238的半衰期分别为,,,则( )
    A.B.与成正比例关系
    C.D.
    10.(2024·安徽蚌埠·模拟预测)科学研究表明,物体在空气中冷却的温度变化是有规律的.如果物体的初始温度为,空气温度保持不变,则t分钟后物体的温度(单位:)满足:.若空气温度为,该物体温度从()下降到,大约所需的时间为,若该物体温度从,下降到,大约所需的时间分别为,则( )(参考数据:)
    A.B.C.D.
    11.(2023·全国·模拟预测)第31届世界大学生夏季运动会在四川成都举行,大运会吉祥物“蓉宝”备受人们欢迎.某大型超市举行抽奖活动,推出“单次消费满1000元可参加抽奖”的活动,奖品为若干个大运会吉祥物“蓉宝”.抽奖结果分为五个等级,等级与获得“蓉宝”的个数的关系式为,已知三等奖比四等奖获得的“蓉宝”多2个,比五等奖获得的“蓉宝”多3个,且三等奖获得的“蓉宝”数是五等奖的2倍,则( )
    A.B.
    C.D.二等奖获得的“蓉宝”数为10
    三、填空题
    12.(2023·海南·模拟预测)新能源汽车是未来汽车的发展方向之一,一个新能源汽车制造厂引进了一条新能源汽车整车装配流水线,这条流水线生产的新能源汽车数量(辆)与创造的价值(万元)之间满足一次函数关系.已知产量为时,创造的价值也为;当产量为辆时,创造的价值达到最大,为万元.若这家工厂希望利用这条流水线创收达到万元,则它应该生产的新能源汽车数量是 .
    13.(2024·全国·模拟预测)药物的半衰期指的是血液中药物浓度降低到一半所需时间.在特定剂量范围内,(单位,h)内药物在血液中浓度由(单位,)降低到(单位,),则药物的半衰期.已知某时刻测得药物甲、乙在血液中浓度分别为和,经过一段时间后再次测得两种药物在血液中浓度都为,设药物甲、乙的半衰期分别为,,则 .
    14.(2023·上海崇明·二模)在一个十字路口,每次亮绿灯的时长为30秒,那么,每次绿灯亮时,在一条直行道路上能有多少汽车通过?这个问题涉及车长、车距、车速、堵塞的干扰等多种因素,不同型号车的车长是不同的,驾驶员的习惯不同也会使车距、车速不同,行人和非机动车的干扰因素则复杂且不确定.面对这些不同和不确定,需要作出假设.例如小明发现虽然通过路口的车辆各种各样,但多数是小轿车,因此小明给出如下假设:通过路口的车辆长度都相等,请写出一个你认为合理的假设 .
    四、解答题
    15.(2024高三·全国·专题练习)某科研团队在培养基中放入一定量的某种细菌进行研究.经过2分钟菌落的覆盖面积为48 mm2,经过3分钟覆盖面积为64 mm2,后期其蔓延速度越来越快;菌落的覆盖面积y(单位:mm2)与经过时间x(单位:min)的关系现有三个函数模型:①y=kax(k>0,a>1);②y=lgbx(b>1);③y=p+q(p>0)可供选择.(参考数据:lg 2≈0.301,lg 3≈0.477)
    (1)选出你认为符合实际的函数模型,说明理由,并求出该模型的解析式.
    (2)在理想状态下,至少经过多少分钟培养基中菌落的覆盖面积能超过300 mm2?(结果保留到整数)
    16.(2024高三·全国·专题练习)为了节能环保、节约材料,定义建筑物的“体形系数” ,其中为建筑物暴露在空气中的面积(单位:平方米),为建筑物的体积(单位:立方米).
    (1)若有一个圆柱体建筑的底面半径为,高度为,暴露在空气中的部分为上底面和侧面,试求该建筑体的“体形系数” ;(结果用含、的代数式表示)
    (2)定义建筑物的“形状因子”为,其中为建筑物底面面积,为建筑物底面周长,又定义为总建筑面积,即为每层建筑面积之和(每层建筑面积为每一层的底面面积).设为某宿舍楼的层数,层高为3米,则可以推导出该宿舍楼的“体形系数”为.当,时,试求当该宿舍楼的层数为多少时,“体形系数”最小.
    17.(2024·浙江金华·模拟预测)太阳能板供电是节约能源的体现,其中包含电池板和蓄电池两个重要组件,太阳能板通过电池板将太阳能转换为电能,再将电能储存于蓄电池中.已知在一定条件下,入射光功率密度(E为入射光能量且为入射光入射有效面积),电池板转换效率与入射光功率密度成反比,且比例系数为k.
    (1)若平方米,求蓄电池电能储存量Q与E的关系式;
    (2)现有铅酸蓄电池和锂离子蓄电池两种蓄电池可供选择,且铅酸蓄电池的放电量,锂离子蓄电池的放电量.设,给定不同的Q,请分析并讨论为了使得太阳能板供电效果更好,应该选择哪种蓄电池?
    注:①蓄电池电能储存量;
    ②当S,k,Q一定时,蓄电池的放电量越大,太阳能板供电效果越好.
    18.(2024·四川南充·二模)已知某科技公司的某型号芯片的各项指标经过全面检测后,分为Ⅰ级和Ⅱ级,两种品级芯片的某项指标的频率分布直方图如图所示:
    若只利用该指标制定一个标准,需要确定临界值K,按规定须将该指标大于K的产品应用于A型手机,小于或等于K的产品应用于B型手机.若将Ⅰ级品中该指标小于或等于临界值K的芯片错误应用于A型手机会导致芯片生产商每部手机损失800元;若将Ⅱ级品中该指标大于临界值K的芯片错误应用于B型手机会导致芯片生产商每部手机损失400元;假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.
    (1)设临界值时,将2个不作该指标检测的Ⅰ级品芯片直接应用于A型手机,求芯片生产商的损失(单位:元)的分布列及期望;
    (2)设且,现有足够多的芯片Ⅰ级品、Ⅱ级品,分别应用于A型手机、B型手机各1万部的生产:
    方案一:将芯片不作该指标检测,Ⅰ级品直接应用于A型手机,Ⅱ级品直接应用于B型手机;
    方案二:重新检测该芯片Ⅰ级品,Ⅱ级品的该项指标,并按规定正确应用于手机型号,会避免方案一的损失费用,但检测费用共需要130万元;
    请求出按方案一,芯片生产商损失费用的估计值(单位:万元)的表达式,并从芯片生产商的成本考虑,选择合理的方案.
    19.(2024高三·全国·专题练习)将连续正整数1,2,,从小到大排列构成一个数,为这个数的位数如当时,此数为123456789101112,共有15个数字,,现从这个数中随机取一个数字,为恰好取到0的概率.
    (1)求
    (2)当时,求的表达式.
    (3)令为这个数中数字0的个数,为这个数中数字9的个数,,,求当时的最大值.
    拓展冲刺练
    一、单选题
    1.(2023·浙江·二模)绍兴某乡村要修建一条100米长的水渠,水渠的过水横断面为底角为120°的等腰梯形(如图)水渠底面与侧面的修建造价均为每平方米100元,为了提高水渠的过水率,要使过水横断面的面积尽可能大,现有资金3万元,当过水横断面面积最大时,水果的深度(即梯形的高)约为( )(参考数据:)
    A.0.58米B.0.87米C.1.17米D.1.73米
    2.(2024·全国·模拟预测)北斗卫星导航系统是中国自行研制的全球卫星导航系统.已知卫星运行轨道近似为以地球为圆心的圆形,运行周期与轨道半径之间关系为(K为常数).已知甲、乙两颗卫星的运行轨道所在平面互相垂直,甲的周期是乙的8倍,且甲的运行轨道半径为,分别是甲、乙两颗卫星的运行轨道上的动点,则之间距离的最大值为( )
    A.B.
    C.D.
    3.(2024·全国·模拟预测)药物的半衰期指的是血液中药物浓度降低一半所需要的时间,在特定剂量范围内,药物的半衰期,其中是药物的消除速度常数,不同药物的消除速度常数一般不同,若内药物在血液中浓度由降低到,则该药物的消除速度常数.已知某药物半衰期为,首次服用后血药浓度为,当血药浓度衰减到时需要再次给药,则第二次给药与首次给药时间间隔约为( )
    A.B.C.D.
    4.(23-24高三上·湖北·阶段练习)已知把物体放在空气中冷却时,若物体原来的温度是,空气的温度是,则后物体的温度满足公式(其中是一个随着物体与空气的接触状况而定的正常数).某天小明同学将温度是的牛奶放在空气中,冷却后牛奶的温度是,则下列说法正确的是( )
    A.
    B.
    C.牛奶的温度降至还需
    D.牛奶的温度降至还需
    5.(2024·陕西咸阳·模拟预测)某军区红、蓝两方进行战斗演习,假设双方兵力(战斗单位数)随时间的变化遵循兰彻斯特模型:,其中正实数,分别为红、蓝两方的初始兵力,为战斗时间;,分别为红、蓝两方时刻的兵力;正实数,分别为红方对蓝方、蓝方对红方的战斗效果系数;和分别为双曲余弦函数和双曲正弦函数.规定:当红、蓝两方任何一方兵力为0时战斗演习结束,另一方获得战斗演习胜利,并记战斗持续时长为.则下列结论不正确的是( )
    A.若且,则
    B.若且,则
    C.若,则红方获得战斗演习胜利
    D.若,则红方获得战斗演习胜利
    二、多选题
    6.(23-24高三下·重庆·阶段练习)吸光度是指物体在一定波长范围内透过光子的能量占收到光能量的比例.透光率是指光子通过物体的能量占发出光能量的比例.在实际应用中,通常用吸光度和透光率来衡量物体的透光性能,它们之间的换算公式为,如表为不同玻璃材料的透光率:
    设材料1、材料2、材料3的吸光度分别为,则( )
    A.B.
    C.D.
    7.(22-23高三上·重庆万州·阶段练习)某摩天轮共有32个乘坐舱,按旋转顺序依次为1~33号(因忌讳,没有13号),并且每相邻两个乘坐舱与旋转中心所成的圆心角均相等,已知乘客在乘坐舱距离底面最近时进入,在后距离地面的高度,已知该摩天轮的旋转半径为60m,最高点距地面135m,旋转一周大约30min,现有甲乘客乘坐11号乘坐舱,当甲乘坐摩天轮15min时,乙距离地面的高度为,则乙所乘坐的舱号为( )
    A.6B.7C.15D.16
    三、填空题
    8.(2023高三上·全国·专题练习)考古学家对四川广汉“三星堆古墓”进行考古发据,科学家通过古生物中某种放射性元素的存量来估算古生物的年代,已知某放射性元素的半衰期约为4200年(即:每经过4200年,该元素的存量为原来的一半),已知古生物中该元素的初始存量为a,经检测古生物中该元素现在的存量为,请推算古生物距今大约 年(参考数据:lg2≈0.3).
    9.(2023·北京·模拟预测)农业技术员进行某种作物的种植密度试验,把一块试验田划分为8块面积相等的区域(除了种植密度,其它影响作物生长的因素都保持一致),种植密度和单株产量统计如下:

    根据上表所提供信息,第 号区域的总产量最大.
    四、解答题
    10.(2024高三·全国·专题练习)随着神舟十五号载人飞船顺利发射,人们对航天事业愈发关注,航天周边产品销量也逐渐提高.某商场准备购进一批火箭模型进行售卖,已知一个B款火箭模型比一个A款贵15元,用1 600元购入的A款火箭模型与2 200元购入的B款火箭模型数量相同.
    (1)这两款火箭模型的进货单价各是多少元?
    (2)已知商场准备购进这两款火箭模型共100个,后将这批火箭模型以A款每个70元,B款每个90元的价格出售.求可获得的总利润y(元)与其中A款火箭模型的数量x(个)之间的关系式.
    11.(2024·山东·模拟预测)如图①,将个完全一样质量均匀长为的长方体条状积木,一个叠一个,从桌子边缘往外延伸,最多能伸出桌缘多远而不掉下桌面呢?这就是著名的“里拉斜塔问题”.
    解决方案如下:如图②,若,则当积木与桌缘垂直且积木重心恰与桌缘齐平时,其伸出桌外部分最长为,如图③,若,欲使整体伸出桌缘最远,在保证所有积木最长棱与桌缘垂直的同时,可先将上面积木的重心与最下方的积木伸出桌外的最远端齐平,然后设最下方积木伸出桌外的长度为,将最下方积木看成一个杠杆,将桌缘看成支点,由杠杆平衡原理可知,若积木恰好不掉下桌面,则上面积木的重力乘以力臂,等于最下方积木的重力乘以力臂,得出方程,求出.所以当叠放两个积木时,伸出桌外最远为,此时将两个积木看成整体,其重心恰与桌缘齐平.如图④,使前两块积木的中心与下方的第三块积木伸出桌外的最远端齐平,便可求出时积木伸出桌外的最远距离.依此方法,可求出4个、5个直至个积木堆叠伸出桌外的最远距离.(参考数据:,为自然常数)
    (1)分别求出和时,积木伸出桌外的最远距离.(用表示);
    (2)证明:当时,积木伸出桌外最远超过;
    (3)证明:当时,积木伸出桌外最远不超过.
    函数
    性质
    y=ax(a>1)
    y=lgax(a>1)
    y=xn(n>0)
    在(0,+∞)上的增减性
    单调递增
    单调递增
    单调递增
    增长速度
    越来越快
    越来越慢
    相对平稳
    图象的变化
    随x的增大逐渐表现为与 平行
    随x的增大逐渐表现为与 平行
    随n值的变化而各有不同
    函数模型
    函数解析式
    一次函数模型
    f(x)=ax+b(a,b为常数,a≠0)
    二次函数模型
    f(x)=ax2+bx+c(a,b,c为常数,a≠0)
    反比例函数模型
    f(x)=eq \f(k,x)+b(k,b为常数,k≠0)
    指数函数模型
    f(x)=bax+c(a,b,c为常数,a>0且a≠1,b≠0)
    对数函数模型
    f(x)=blgax+c(a,b,c为常数,a>0且a≠1,b≠0)
    幂函数模型
    f(x)=axα+b(a,b,α为常数,a≠0,α≠0)



    接单量t(单)
    7831
    8225
    8338
    油费s(元)
    107150
    110264
    110376
    平均每单里程k(公里)
    15
    15
    15
    平均每公里油费a(元)
    0.7
    0.7
    0.7
    10
    20
    30
    40
    50
    60
    70
    80
    12.8
    16.5
    19
    20.9
    21.5
    21.9
    23
    25.4
    161
    29
    20400
    109
    603
    出险情况
    商业险折扣
    若基准保费3000元时对应保费
    三年内6赔
    1.8
    5400
    三-年内5赔
    1.5
    4500
    三年内4赔
    1.2
    3600
    三年内3赔
    1
    3000
    三年内2赔
    0.8
    2400
    三年内1赔
    0.7
    2100
    三年内0赔
    0.6
    1800
    物质
    τ的量纲单位
    τ的值
    铀234
    万年
    35.58
    铀235
    亿年
    10.2
    铀238
    亿年
    64.75
    玻璃材料
    材料1
    材料2
    材料3
    0.6
    0.7
    0.8

    相关试卷

    考点17 导数与函数的单调性(3种核心题型+基础保分练+综合提升练+拓展冲刺练)-2025高考数学一轮精讲讲练(新高考版):

    这是一份考点17 导数与函数的单调性(3种核心题型+基础保分练+综合提升练+拓展冲刺练)-2025高考数学一轮精讲讲练(新高考版),文件包含考点17导数与函数的单调性3种核心题型+基础保分练+综合提升练+拓展冲刺练原卷版docx、考点17导数与函数的单调性3种核心题型+基础保分练+综合提升练+拓展冲刺练解析版docx等2份试卷配套教学资源,其中试卷共68页, 欢迎下载使用。

    考点13 函数的图像(3种核心题型+基础保分练+综合提升练+拓展冲刺练)-2025高考数学一轮精讲讲练(新高考版):

    这是一份考点13 函数的图像(3种核心题型+基础保分练+综合提升练+拓展冲刺练)-2025高考数学一轮精讲讲练(新高考版),文件包含考点13函数的图像3种核心题型+基础保分练+综合提升练+拓展冲刺练原卷版docx、考点13函数的图像3种核心题型+基础保分练+综合提升练+拓展冲刺练解析版docx等2份试卷配套教学资源,其中试卷共84页, 欢迎下载使用。

    考点12 对数与对数函数(3种核心题型+基础保分练+综合提升练+拓展冲刺练)-2025高考数学一轮精讲讲练(新高考版):

    这是一份考点12 对数与对数函数(3种核心题型+基础保分练+综合提升练+拓展冲刺练)-2025高考数学一轮精讲讲练(新高考版),文件包含考点12对数与对数函数3种核心题型+基础保分练+综合提升练+拓展冲刺练原卷版docx、考点12对数与对数函数3种核心题型+基础保分练+综合提升练+拓展冲刺练解析版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map