|试卷下载
终身会员
搜索
    上传资料 赚现金
    2023-2024学年四川省泸州市高三(上)期末数学试卷(理科)
    立即下载
    加入资料篮
    2023-2024学年四川省泸州市高三(上)期末数学试卷(理科)01
    2023-2024学年四川省泸州市高三(上)期末数学试卷(理科)02
    2023-2024学年四川省泸州市高三(上)期末数学试卷(理科)03
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023-2024学年四川省泸州市高三(上)期末数学试卷(理科)

    展开
    这是一份2023-2024学年四川省泸州市高三(上)期末数学试卷(理科),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    本试卷共4页,22小题,满分150分.考试用时120分钟.
    第I卷 选择题(60分)
    一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1.设集合,,则
    A.B.C.D.
    2.若为虚数单位,则复数的共轭复数在复平面内对应的点位于
    A.第一象限B.第二象限C.第三象限D.第四象限
    3.执行右图的程序,若输入的实数=4,则输出结果为
    A.B.C.D.
    4.若非零实数、满足,则下列式子一定正确的是
    A.B.
    C.D.
    5.“”是“函数的图象关于直线对称”的
    A.充分不必要条件B.必要不充分条件
    C.充要条件D.既不充分也不必要条件
    6.的展开式中只有第5项的二项式系数最大,则展开式中的常数项是
    A.28B.C.70D.
    7.在中,,,的最小值是
    A.B.C.D.
    8.已知直线被圆:截得的弦长为,且圆的方程为,则圆与圆的位置关系为
    A.相交B.外切C.相离D.内切
    9.已知正三棱柱的高为,它的六个顶点都在一个直径为4的球的球面上,则该棱柱的体积为
    A.B.C.D.
    10.已知长方体ABCD﹣A1B1C1D1的体积,若四面体的外接球的表面积为S,则S的最小值为
    A.B.C.D.
    11.函数对任意的都有,且时的最大值为,下列四个结论:①是的一个极值点;②若为奇函数,则的最小正周期;③若为偶函数,则在上单调递增;④的取值范围是.其中一定正确的结论编号是
    A.①②B.①③C.①②④D.②③④
    12.已知,是双曲线的左,右焦点,经过点且与轴垂直的直线与双曲线的一条渐近线相交于点,且.则该双曲线离心率的取值范围是
    A.B.C.D.
    第II卷 非选择题(90分)
    二、填空题:本题共4小题,每小题5分,共20分.
    13.设等比数列满足,,则 .
    14.的内角、、的对边分别为、、,若,则 .
    15.已知是奇函数,若恒成立,则实数a的取值范围是 .
    16.已知点为抛物线的焦点,经过点且倾斜角为的直线与抛物线相交于,点,(为坐标原点)的面积为,线段的垂直平分线与轴相交于点.则的值为 .
    三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
    (一)必考题:共60分.
    17.(12分)已知等差数列满足,公差,等比数列满足,,.
    求数列,的通项公式;
    若数列满足,求的前项和.
    18.(12分)如图,四棱锥的侧面是正三角形,,且,,是中点.
    (1)求证:平面;
    (2)若平面平面,且,求二面角的余弦值.
    19.(12分)冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.而2019年出现的新型冠状病毒(nCV)是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有份需检验血液.
    (1)假设这份需检验血液有且只有一份为阳性,从中依次不放回的抽取份血液,已知前两次的血液均为阴性,求第次出现阳性血液的概率;
    (2)现在对份血液进行检验,假设每份血液的检验结果是阳性还是阴性都是独立的,据统计每份血液是阳性结果的概率为,现在有以下两种检验方式:方式一:逐份检验;方式二:混合检验,将份血液分别取样混合在一起检验(假设血液混合后不影响血液的检验).若检验结果为阴性,则这份血液全为阴性,检验结束;如果检验结果为阳性,则这份血液中有为阳性的血液,为了明确这份血液究竟哪几份为阳性,就要对这份再逐份检验.从检验的次数分析,哪一种检验方式更好一些,并说明理由.参考数据:.
    20.(12分)已知函数,.其中.
    (1)证明:;
    (2)记.若存在使得对任意的都有成立.求的值.(其中是自然对数的底数).
    21.(12分)已知椭圆的左右焦点分别是,点在椭圆上,满足
    (1)求椭圆的标准方程;
    (2)直线过点,且与椭圆只有一个公共点,直线与的倾斜角互补,且与椭圆交于异于点的两点,与直线交于点(介于两点之间),是否存在直线,使得直线,,的斜率按某种排序能构成等比数列?若能,求出的方程,若不能,请说理由.
    (二)选考题,共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.
    22.[选修4-4:坐标系与参数方程](10分)
    在平面直角坐标系中,曲线的参数方程为(为参数).以为极点,轴的正半轴为极轴,建立极坐标系.
    (1)求曲线的极坐标方程;
    (2)已知是曲线上任意两点,且,求面积的最大值.
    23.[选修4-5:不等式选讲](10分)
    已知函数f(x)|2x﹣3|,g(x)|2x+a+b|.
    (1)解不等式f(x)x2;
    (2)当a0,b0时,若F(x)f(x)+g(x)的值域为[5,+∞),求证:.
    叙永一中2023年秋期高三期末考试
    理科数学参考答案
    1.B 2.B 3.C 4.C 5.A 6.A 7.A 8.A 9.D 10.C 11.A 12.B
    13.1 14. 15. 16.2
    17.解:由题意知,,公差,有1,,成等比数列,
    所以,解得.所以数列的通项公式.
    数列的公比,其通项公式.
    当时,由,所以.
    当时,由,,
    两式相减得,所以.故
    所以的前项和,.
    又时,,也符合上式,故.
    18.(1)取的中点,连接,
    因为是中点,
    所以,且,
    又因为,,
    所以,,
    即四边形是平行四边形,所以,
    又因为平面,平面,
    所以平面;
    (2)方法一:取中点,连接,,因为是正三角形,所以,
    因为平面平面,所以平面,平面,
    所以,故,
    以为原点,建立如图所示的空间直角坐标系,则,
    ,,,,,,
    所以,,
    设平面的法向量为,则,,
    令得, 易知平面的法向量为,
    则,所以二面角的余弦值为.
    方法二:过作交于,所以,且平面,
    过作交于,连接,所以,
    所以为二面角的平面角,因为,,
    因为平面,所以,且,
    又因为,所以,,
    故,所以二面角的余弦值为.
    19.解:(1).
    (2)方式一:检验次数次.
    设方式二需要需检验的次数为.根据题意有的可能取值为.
    ,.
    所以:的分布列为:
    所以:.因为:,
    所以:.
    所以:从检验的次数分析,方式二更好一些.
    20.解:(1)要证明,即证明,.
    令,.则.
    于是在单调递增,所以即,.所以.
    (2),.
    则.
    令,.
    当时,由(1)知.

    (i)当时,于是,从而.
    故在严格单调递增.其中.
    (ii)当时,

    .(用到了在单调递增与)
    于是,故在严格单调递减.
    综上所述,在严格单调递减,在严格单调递增.
    因为,所以.所以.
    21.解:(1)设,则,,
    所以椭圆方程为;
    (2)设直线的方程为,
    与联立得,∴,
    因为两直线的倾斜角互补,所以直线斜率为,
    设直线的方程为,
    联立整理得,
    ,所以关于对称,
    由正弦定理得,
    因为,所以,由上得,
    假设存在直线满足题意,
    设,按某种排列成等比数列,设公比为,则,
    所以,则此时直线与平行或重合,与题意不符,所以不存在满足题意的直线.
    22.解:(1)消去参数,得到曲线的标准方程为:,
    故曲线的极坐标方程为.
    (2)极坐标系中,不妨设,其中.
    由(1)知:
    面积,
    当时,即有最大值,此时.故面积的最大值为.
    23.(1)解:不等式f(x)x2化为|2x﹣3|x2,等价于或,
    即为或,解得x或x﹣3或1x,
    所以不等式f(x)x2的解集为{x|x1或x﹣3};
    (2)证明:由a0,b0,
    根据绝对值三角不等式可知F(x)f(x)+g(x)|2x﹣3|+|2x+a+b||3﹣2x|+|2x+a+b|
    ≥|3﹣2x+2x+a+b||a+b+3|a+b+3,
    又F(x)f(x)+g(x)的值域为[5,+∞),
    可得a+b+35,即a+b2,即(a+2)+(b+2)6,
    故[(a+2)+(b+2)]()
    (2)(2+2),
    当且仅当,即ab1时取等号时,故.
    1
    5
    相关试卷

    2023-2024学年四川省泸州市高三二诊考试理科数学试卷(含答案): 这是一份2023-2024学年四川省泸州市高三二诊考试理科数学试卷(含答案),共10页。

    2024年泸州市高三三诊理科数学试卷: 这是一份2024年泸州市高三三诊理科数学试卷,共4页。

    2023-2024学年四川省泸州市马街中学高三(下)开学数学试卷(理科)(含解析): 这是一份2023-2024学年四川省泸州市马街中学高三(下)开学数学试卷(理科)(含解析),共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map