河北省保定市顺平县2024-2025学年九年级上学期期中数学试题
展开(本卷为闭卷考试,试卷页数:8页,考试时间:120分钟,卷面分:5分,总分:125分)
一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.把方程化成一般式,则的值是( )
A.B.7C.D.1
2.下列图形中,既是中心对称又是轴对称图形的是( )
A. B. C. D.
3.将抛物线向左平移1个单位,再向上平移5个单位,得到抛物线的函数表达式为( )
A.B.
C.D.
4.在平面直角坐标系中,点G的坐标是,连接,将线段绕原,点O旋转180°,得到对应线段,则点G的坐标为( )
A.B.C.D.
5.用配方法解方程时,配方后所得的方程是( )
A.B.C.D.
6.正比例函数和二次函数的图象一致的是( )
A. B. C. D.
7.已知关于x的一元二次方程的一个根是0,则m的值为( )
A.B.C.1D.以上三个都可以
8.在平面直角坐标系中,将抛物线沿y轴向下平移2个单位.则平移后得到的抛物线的顶点一定在( )
A.第一象限B.第二象限C.第三象限D.第四象限
9.某厂家2024年1—5月份销售的电车数量如图所示.设从2月份到4月份,该厂家电车销售的平均月增长率为x,根据题意可得方程( )
A.B.
C.D.
10.对于一元二次方程,下列四个结论中错误的是( )
A.若,当时,没有实数根
B.若4是方程的一个根,那么是方程的另一个根
C.若方程的两根符号相同,那么方程的两根符号也相同
D.若没有实数根,则二次函数与直线没有交点
11.如图,O是等边内一点,,,,将线段以点A为旋转中心逆时针旋转60°,得到线段.
嘉嘉:由图知,琪琪:.
以下说法,正确的是( )
A.嘉嘉正确,琪琪错误B.嘉嘉错误,琪琪正确
C.两人都正确D.两人都错误
12.已知二次函数,其中k,m为常数,则下列说法正确的是( )
A.若,,则二次函数y的最小值小于0
B.若,,则二次函数y的最大值小于0
C.若,,则二次函数y的最大值大于0
D.若,,则二次函数的最小值小于0
二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上)
13.若2是方程的一个根,则______.
14.生物兴趣小组的同学,将自己收集的标本向本组其他成员各赠送一件,全组共赠送了90件,则全组共有______名同学.
15.小明推铅球,铅球行进高度与水平距离之间的关系式为,当铅球行进的高度为时,铅球行进的水平距离______m.
16.如图,在平面直角坐标系中,等腰直角三角形的顶点A,B分别在x轴和y轴上,将绕点O逆时针旋转30°后得到,如果点A的坐标为,那么点的坐标为______.
三、解答题(本大题共8个小题,共72分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分7分)
已知某二次函数的图象的顶点为,且过点.
(1)求此二次函数的解析式
(2)判断点是否在这个二次函数的图象上,并说明理由.
18.(本小题满分8分)
按要求解一元二次方程,
(1)(配方法)(2)(因式分解法)
19.(本小题满分8分)
已知关于x的一元二次方程.
(1)求证:无论k为何实数,方程总有两个实数根;
(2)若方程的两个实数根,,满足,求k的值.
20.(本小题满分8分)
开展盐碱地综合利用对保障国家粮食安全、端牢中国饭碗具有重要战略意义.我市某农业科技小组对A,B两个小麦品种进行抗盐碱实验种植对比研究.去年A、B两个品种各种植了20亩,收获后发现,B品种的平均亩产量比A品种高100千克,且A、B两个品种总产量为14000千克.
(1)求A、B两个品种去年平均亩产量分别是多少千克?
(2)今年,科技小组优化了小麦的种植方法,预计A、B两个品种平均亩产量将在去年的基础上分别增加30千克和千克.由于B品种深受市场欢迎,今年决定对两个品种的种植面积进行调整,B品种种植面积比去年增加m亩,且保持总种植面积与去年相同,使总产量达到15200千克,求m的值.
21.(本小题满分9分)
如图,在平面直角坐标系中,的三个顶点分别是,,.
(1)作关于轴对称的图形,记为,画出,并写出点,的坐标;
(2)请画出关于原点O成中心对称的;
(3)在x轴上找一点P,使得点P到点A,C的距离最小,并求出P点坐标.
22.(本小题满分9分)
已知抛物线(a,b,c是常数,)中x与y的部分对应值如下表.
(1)根据以上信息,可知______0(选填“<”“>”或“=”);
(2)求抛物线的解析式并在图中画出的图象;
备用图
(3)地物线的解析式为.设直线与抛物线、都有两个交点,交点从左到右依次为,,,,请根据图象直接写出线段的值.
23.(本小题满分11分)
如图1所示,将线段绕点A逆时针旋转得到线段,在线段上找一点D,将线段绕点A逆时针旋转得到线段,连接,,.
图1 图2图3
(1)求证:;
(2)如图2所示,:将绕点A逆时针旋转一定的角度,(1)中的结论是否依然成立?若成立,请加以证明;若不成立,请说明理由.
(3)点D为的中点,,,在绕点A逆时针旋转过程中,若点B,D,E恰好第一次在一条直线上,如图3,直接写出线段的长.
24.(本小题满分12分)
抛物线与x轴交于点A,C(点A在点C的右侧),与y轴交于点B.一次函数经过点A,B.
图1图2
(1)求k,b的值;
(2)如图1,过点C的直线交线段于点M,若,直接写出点M的坐标;
(3)如图2,点D是第一象限内抛物线上的一个动点,过点D作轴交于点E,,垂足为F.当时,求点F的坐标.
2024—2025学年第一学期期中调研考试
九年级数学(人教版)参考答案
一、选择题(本大题共12个小题,每小题3分,共36分)
1—5BDBCB6—10DCABA11.C 12.D
二、填空题(本大题共4个小题,每小题3分,共12分)
13.414.1015.2或616.
三、解答题(本大题共8个小题,共72分)
17.解:(1)∵此二次函数图象的顶点为
∴设抛二次函数的解析式为:
∵它的图象过点
∴,解得
∴此二次函数的关系式为······························································4分
(2)点不在这个二次函数的图象上.························································5分
理由:当时,.
∴点不在这个二次函数的图象上······························································7分
18.解:(1)(配方法)
∴
∴,····································································································4分
(2)(因式分解法)
∴或
∴,····································································································8分
19.解:(1)
∵无论k为何实数,
∴
∴无论k为何实数,方程总有两个实数根···································································5分
(2)由根与系数的关系得出
解得········································································································8分
20.解:(1)设A品种去年平均亩产量为x千克,B品种去年平均亩产量为千克
解得:
答:A、B两个品种去年平均亩产量分别为300千克和400千克·········································3分
(2)
解得:, (舍去)
∴m的值为5.··········································································································8分
21.解:(1)即为所求,,·········································4分
(2)即为所求···························································································6分
(3)点P即为所求································································································7分
设直线所在直线解析式为:
将和代入得
解得
∴
当时,
∴P点坐标为····························································································9分
22.解:(1)<······································································································2分
(2)由表格知抛物线的顶点坐标为,所以设抛物线的解析式为:
∵它的图象过点
∴,解得.
∴抛物线解析式为,图象如下图·························································7分
(3)
·······································································································9分
23.证明:(1)由题意可知:,,
在和中
∴············································································································3分
(2)仍然成立.
由(1)可知,,
∴
即
在和中
∴
∴············································································································9分
(3)······································································································11分
24.解:(1)当时,,解得,
∴,,·······································································2分
∵经过点A,B,将,代入,得
解得,·································································································4分
(2)········································································································6分
(3)过点F作轴于点G,过点E作于点H
由(1)可知,
∴一次函数解析式为:
因为点E在直线上
∴设E点坐标
∴D点坐标为
∴,解得,
∴E点坐标为或·············································································8分
∵,
∴
∴
∵轴
∴
∴为等腰直角三角形
∴
又∵轴
∴
∴·············································································································10分
①当E点坐标为时,此时F与B重合
∴F点坐标
②当E点坐标为时,此时F点坐标为···············································12分x
…
0
1
2
…
y
…
0
…
河北省保定市曲阳县2024-2025学年九年级上学期11月期中数学试题: 这是一份河北省保定市曲阳县2024-2025学年九年级上学期11月期中数学试题,文件包含河北省保定市曲阳县2024-2025学年九年级上学期11月期中数学试题pdf、九年级数学答案docx等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
河北省保定市竞秀区2024-2025学年九年级上学期11月期中数学试题: 这是一份河北省保定市竞秀区2024-2025学年九年级上学期11月期中数学试题,文件包含九年级数学答案pdf、2024-2025学年第一学期期中九年级数学pdf等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
河北省保定市阜平县2024-2025学年九年级上学期11月期中数学试题: 这是一份河北省保定市阜平县2024-2025学年九年级上学期11月期中数学试题,文件包含九年级数学人教版答案docx、九年级数学人教版pdf等2份试卷配套教学资源,其中试卷共6页, 欢迎下载使用。