第27讲 动态几何问题透视-初中数学竞赛辅导讲义及习题解答
展开
这是一份第27讲 动态几何问题透视-初中数学竞赛辅导讲义及习题解答,共8页。试卷主要包含了动中觅静,动静互化,以动制动,求与之间的函数关系式,已知等内容,欢迎下载使用。
动态几何问题,是指以几何知识和图形为背景,渗入运动变化观点的一类问题,常见的形式是:点在线段或弧线上运动、图形的翻折、平移、旋转等,解这类问题的基本策略是:
1.动中觅静
这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.
2.动静互化
“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.
3.以动制动
以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.
注:几何动态既是一类问题,也是一种观点与思维方法,运用几何动态的观点,可以把表面看来不同的定理统一起来,可以找到探求几何中的最值、定值等问题的方法;更一般情况是,对于一个数学问题,努力去发掘更多结论,不同解法,通过弱化或强化条件来探讨结论的状况等,这就是常说的“动态思维”.
【例题求解】
【例1】 如图,把直角三角形ABC的斜边AB放在定直线上,按顺时针方向在上转动两次,使它转到A″B″C″的位置,设BC=1,AC=,则顶点A运动到点A″的位置时,点A经过的路线与直线所围成的面积是 .
思路点拨 解题的关键是将转动的图形准确分割.RtΔABC的两次转动,顶点A所经过 的路线是两段圆弧,其中圆心角分别为120°和90°,半径分别为2和,但该路线与直线所围成的面积不只是两个扇形面积之和.
【例2】如图,在⊙O中,P是直径AB上一动点,在AB同侧作AA′⊥AB,BB′⊥AB,且AA′=AP,BB′=BP,连结A′B′,当点P从点A移到点B时,A′B′的中点的位置( )
⌒
A.在平分AB的某直线上移动 B.在垂直AB的某直线上移动
C.在AmB上移动 D.保持固定不移动
思路点拨 画图、操作、实验,从中发现规律.
【例3】 如图,菱形OABC的长为4厘米,∠AOC=60°,动点P从O出发,以每秒1厘米的速度沿O→A→B路线运动,点P出发2秒后,动点Q从O出发,在OA上以每秒1厘米的速度,在AB上以每秒2厘米的速度沿O→A→B路线运动,过P、Q两点分别作对角线AC的平行线.设P点运动的时间为秒,这两条平行线在菱形上截出的图形(图中的阴影部分)的周长为厘米,请你回答下列问题:
(1)当=3时,的值是多少?
(2)就下列各种情形:
①0≤≤2;②2≤≤4;③4≤≤6;④6≤≤8.求与之间的函数关系式.
(3)在给出的直角坐标系中,用图象表示(2)中的各种情形下与的关系.
思路点拨 本例是一个动态几何问题,又是一个“分段函数”问题,需运用动态的观点,将各段分别讨论、画图、计算.
注:动与静是对立的,又是统:一的,无论图形运动变化的哪一类问题,都真实地反映了现实世界中数与形的变与不变两个方面,从辩证的角度去观察、探索、研究此类问题,是一种重要的解题策略.
建立运动函数关系就更一般地、整体-地把握了问题,许多相关问题就转化为求函数值或自变量的值.
【例4】 如图,正方形ABCD中,有一直径为BC的半圆,BC=2cm,现有两点E、F,分别从点B、点A同时出发,点E沿线段BA以1m/秒的速度向点A运动,点F沿折线A—D—C以2cm/秒的速度向点C运动,设点E离开点B的时间为2 (秒).
(1)当为何值时,线段EF与BC平行?
(2)设1
相关试卷
这是一份第14讲 图表信息问题-初中数学竞赛辅导讲义及习题解答,共9页。试卷主要包含了不等式及函数知识等解决问题.等内容,欢迎下载使用。
这是一份第12讲 方程与函数-初中数学竞赛辅导讲义及习题解答,共7页。
这是一份第11讲 双曲线-初中数学竞赛辅导讲义及习题解答,共8页。

