年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省泰州市2024-2025学年高二上学期11月期中考试数学试卷(解析版)

    江苏省泰州市2024-2025学年高二上学期11月期中考试数学试卷(解析版)第1页
    江苏省泰州市2024-2025学年高二上学期11月期中考试数学试卷(解析版)第2页
    江苏省泰州市2024-2025学年高二上学期11月期中考试数学试卷(解析版)第3页
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省泰州市2024-2025学年高二上学期11月期中考试数学试卷(解析版)

    展开

    这是一份江苏省泰州市2024-2025学年高二上学期11月期中考试数学试卷(解析版),共11页。试卷主要包含了考试结束后,将答题卡交回, 下列说法正确的是, 已知圆,直线等内容,欢迎下载使用。
    注意事项:
    1.答卷前,考生务必将自己的姓名、考试号等填写在答题卡指定位置上.
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
    3.考试结束后,将答题卡交回.
    一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1. 直线的倾斜角的大小是( )
    A. B. C. D.
    【答案】B
    【解析】由题意可知该直线的斜率为,所以其倾斜角为.
    故选:B
    2. 圆不经过( )
    A. 第一象限B. 第二象限
    C. 第三象限D. 第四象限
    【答案】C
    【解析】圆化为(,
    表示圆心为,半径为5的圆,如图所示:
    所以,圆不经过第三象限.
    故选:C.
    3. 双曲线的一个焦点是,则( )
    A. -1B. 1C. -2D. 2
    【答案】D
    【解析】由双曲线的一个焦点是,得,方程为,
    则,解得.
    故选:D
    4. 直线与圆交于、两点,则的面积为( )
    A. 2B. C. D.
    【答案】C
    【解析】圆的圆心,半径,
    点到直线的距离,
    则,所以的面积为.
    故选:C
    5. 已知为抛物线的焦点,点在上,且,则点到轴的距离为( )
    A. B. C. D.
    【答案】B
    【解析】设Mx,y,,,得,
    所以点到轴的距离为.
    故选:B.
    6. 点在直线上运动,,,则的最小值是( )
    A. 3B. 4C. 5D. 6
    【答案】C
    【解析】点,都在直线的下方,
    点关于直线的对称点,
    于是,
    当且仅当点是线段与直线的交点时取等号,
    所以的最小值是5.故选:C
    7. 已知、分别为椭圆的左右顶点,为椭圆上异于、的一点,若直线、的斜率之积为,则椭圆的离心率为( )
    A. B. C. D.
    【答案】A
    【解析】依题意,,设点,则,即,
    依题意,,因此,
    所以椭圆的离心率.
    故选:A
    8. 古希腊数学家阿波罗尼奥斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数(且)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知,,圆:上有且仅有一个点满足,则的取值可以为( )
    A. 1或3B. 2C. 5D. 1或5
    【答案】D
    【解析】设,由,得,
    整理得,又点是圆上有且仅有的一点,
    所以两圆相切,
    圆的圆心坐标为,半径为2,圆的圆心坐标为,半径为,
    两圆的圆心距为3,
    当两圆外切时,,得,
    当两圆内切时,,得.
    故选:D.
    二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
    9. 下列说法正确的是( )
    A. 过点并且倾斜角为的直线方程为
    B. 直线与直线之间的距离为
    C. 直线在轴上的截距为
    D. 将直线绕原点逆时针旋转,所得到的直线为
    【答案】ACD
    【解析】A.过点并且倾斜角为的直线方程为,故A正确;
    B. 直线与直线之间的距离,故B错误;
    C. 直线,时,,所以直线在轴上的截距为,故C正确;
    D. 直线过原点,且倾斜角为,直线绕原点逆时针旋转,旋转后直线的倾斜角为,
    也过原点,得到直线方程为,故D正确.故选:ACD
    10. 已知圆,直线.则以下几个结论正确的有( )
    A. 直线恒过定点
    B. 圆被轴截得的弦长为
    C. 点到直线的距离的最大值是
    D. 直线被圆截得的弦长最短时,直线的方程为
    【答案】ABD
    【解析】A.直线,不管为何值,满足方程,
    即可直线恒过定点,故A正确;
    B.当时,,解得:,,
    所以圆被轴截得的弦长为,故B正确;
    C.圆心到直线的距离的最大值是圆心与定点的距离,故C错误;
    D.设直线的定点,当点为弦的中点时,此时弦长最短,即,,所以直线的斜率为2,所以直线的方程为,即,故D正确.
    故选:ABD
    11. 《文心雕龙》中说“造化赋形,支体必双,神理为用,事不孤立”,意思是自然界的事物都是成双成对的.已知动点到定点的距离和它到直线的距离的比是常数.若某条直线上存在这样的点,则称该直线为“成双直线”,下列说法正确的是( )
    A. 动点的轨迹方程为:
    B. 的最大值为16
    C. 点为动点的轨迹上的任意一点,,,则的面积为
    D. 直线与动点的轨迹交于两点,则的最小值为
    【答案】AD
    【解析】设,则,化简为,故A正确;
    B.由A可知,,的最大值为,故B错误;
    C.由椭圆方程可知,点是椭圆的左焦点,则,
    即,,
    ,所以,则,故C错误;
    D.四边形是平行四边形,
    即,
    ,
    当,即时,等号成立,
    所以则的最小值为,故D正确.
    故选:AD
    三、填空题:本题共3小题,每小题5分,共15分.
    12. 已知直线,若,则______.
    【答案】
    【解析】由题意可知,,解得:.
    故答案为:
    13. 已知圆和圆,则两圆公共弦的弦长为_______.
    【答案】
    【解析】圆的圆心,半径,
    圆的圆心,半径,
    而,即圆与圆相交,其公共弦所在直线的方程为,
    点到直线的距离,
    所以公共弦长为.
    故答案为:
    14. 已知抛物线的焦点为,则抛物线的准线方程是_____,点是抛物线上的动点,设点,当取得最小值时,_______.
    【答案】① ②2
    【解析】抛物线的焦点为,准线方程为;
    设,则,
    当且仅当时取等号,此时.
    故答案为:;2
    四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
    15. 已知的两顶点坐标为,,是边的中点,是边上的高.
    (1)求所在直线的方程;
    (2)求高所在直线的方程.
    解:(1)由,边中点,得点,又点,
    则直线的斜率,直线的方程为,即,
    所以所在直线的方程为.
    (2)由(1)知,直线的斜率,
    所以高所在直线方程为,即.
    16. 已知圆的圆心在直线上,且与轴相切于点.
    (1)求圆的方程;
    (2)若圆与直线交于、两点,_____,求的值.
    从下列三个条件中任选一个补充在上面问题中并作答:
    条件①:圆被直线分成两段圆弧,其弧长比为;
    条件②:;
    条件③:.
    解:(1)设圆心,半径为,则,
    解得:,
    所以圆的方程为;
    (2)若选条件①,则劣弧所对的圆心角为,所以圆心到直线的距离为,
    即,解得:或;
    若选条件②,,,所以圆心到的距离为,
    即,所以或;
    若选条件③,,则圆心到的距离为,
    即,所以或.
    17. 已知双曲线的中心在原点,过点,且与双曲线有相同的渐近线.
    (1)求双曲线的标准方程;
    (2)已知、是双曲线上的两点,且线段的中点为,求直线的方程.
    解:(1)由双曲线与双曲线有相同的渐近线,设双曲线的方程为,
    而点在双曲线上,因此,方程为,
    所以双曲线的标准方程为.
    (2)显然直线不垂直于轴,设直线的方程为,
    由消去得,
    由线段的中点为M1,1,得,解得,
    此时方程为,,因此,
    所以直线的方程为,即.
    18. 已知表示圆的方程.
    (1)求实数的取值范围;
    (2)当圆的面积最大时,求过点的圆的切线方程;
    (3)为圆上任意一点,已知点,在(2)的条件下,求的最小值.
    解:(1)圆的方程,
    可化为,
    ∵该方程表示圆,∴,解得,
    ∴实数m的取值范围为.
    (2)圆的半径,
    ∴当时,圆C的半径最大,即圆C的面积取得最大值,
    此时圆的方程为,圆心,半径,
    当切线斜率不存在时,其方程为,符合题意;
    当切线斜率存在时,设其方程为y=kx-1,即,
    ∵圆心到切线的距离等于半径,
    ∴,解得,
    ∴切线方程,即,
    综上,切线的方程为或.
    (3)设Px,y,又,,,
    则,
    设,则表示圆上的点与点的距离的平方,
    ∵,则点在圆外,
    所以,

    ∴的最小值为.
    19. 如图,已知椭圆过点,焦距为,斜率为的直线与椭圆相交于异于点的两点,且直线均不与轴垂直.
    (1)求椭圆的方程;
    (2)若,求的方程;
    (3)记直线的斜率为,直线的斜率为,证明:为定值.
    解:(1)由题意得,
    解得,
    故椭圆的方程为.
    (2)设直线的方程为,
    由得,
    由,
    得,
    则.

    解得或
    当时,直线经过点,不符合题意,舍去;
    当时,直线的方程为.
    (3)直线,均不与轴垂直,所以,则且,
    所以
    为定值.

    相关试卷

    江苏省扬州市邗江区2024-2025学年高二上学期期中考试数学试卷(解析版):

    这是一份江苏省扬州市邗江区2024-2025学年高二上学期期中考试数学试卷(解析版),共12页。试卷主要包含了 直线的倾斜角为, 两条直线,之间的距离为, 圆与圆的公切线有, 已知直线,则下列结论正确的是, 圆与圆相交于、两点,则等内容,欢迎下载使用。

    江苏省苏州市常熟市2024-2025学年高二上学期期中考试 数学试卷(解析版):

    这是一份江苏省苏州市常熟市2024-2025学年高二上学期期中考试 数学试卷(解析版),共13页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    江苏省连云港市东海县2024-2025学年高二上学期期中考试数学试卷(解析版):

    这是一份江苏省连云港市东海县2024-2025学年高二上学期期中考试数学试卷(解析版),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map